Chaperonins cpn60/cpn10 (GroEL/GroES in Escherichia coli) assist folding of nonnative polypeptides. Folding of the chaperonins themselves is distinct in that it entails assembly of a sevenfold symmetrical structure. We have characterized denaturation and renaturation of the recombinant human chaperonin 10 (cpn10), which forms a heptamer. Denaturation induced by chemical denaturants urea and guanidine hydrochloride (GuHCl) as well as by heat was monitored by tyrosine fluorescence, far-ultraviolet circular dichroism, and cross-linking; all denaturation reactions were reversible. GuHCl-induced denaturation was found to be cpn10 concentration dependent, in accord with a native heptamer to denatured monomer transition. In contrast, urea-induced denaturation was not cpn10 concentration dependent, suggesting that under these conditions cpn10 heptamers denature without dissociation. There were no indications of equilibrium intermediates, such as folded monomers, in either denaturant. The different cpn10 denatured states observed in high [GuHCl] and high [urea] were supported by cross-linking experiments. Thermal denaturation revealed that monomer and heptamer reactions display the same enthalpy change (per monomer), whereas the entropy-increase is significantly larger for the heptamer. A thermodynamic cycle for oligomeric cpn10, combining chemical denaturation with the dissociation constant in absence of denaturant, shows that dissociated monomers are only marginally stable (3 kJ/mol). The thermodynamics for co-chaperonin stability appears conserved; therefore, instability of the monomer could be necessary to specify the native heptameric structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2144490 | PMC |
http://dx.doi.org/10.1110/ps.9.11.2109 | DOI Listing |
Chem Biodivers
January 2025
Center of Plasma Nano-interface Engineering, Kyushu University, Fukuoka, Japan.
In recent years, there has been an increase in the study of the mechanisms behind plasma oncology. For this, many wet lab experiments and computational studies were conducted. Computational studies give an advantage in examining protein structures that are costly to extract in enough amounts to analyze the biophysical properties following plasma treatment.
View Article and Find Full Text PDFSci Rep
January 2025
Chongqing Health Center for Women and Children /Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China.
Heat shock proteins (HSPs) are a kind of molecular chaperone that helps protein folding, which is closely related to cancer. However, the association between HSPs and clear cell renal clear cell carcinoma (ccRCC) is uncertain. We explored the prognostic value of HSP110, HSP90, HSP70 and HSP60 families in ccRCC and their role in tumor immune microenvironment.
View Article and Find Full Text PDFJ Zhejiang Univ Sci B
April 2024
Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
Commun Biol
December 2024
Institut national de la recherche scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, H7V 1M7, Laval, QC, Canada.
We have shown that virus-specific CD4 and CD8 memory T cells (TM) induce autophagy after T cell receptor (TCR) engagement to provide free glutamine and fatty acids, including in people living with HIV-1 (PLWH). These nutrients fuel mitochondrial ATP generation through glutaminolysis and fatty acid oxidation (FAO) pathways, to fulfill the bioenergetic demands for optimal IL-21 and cytotoxic molecule production in CD4 and CD8 cells, respectively. Here, we expand our knowledge on how the metabolic events that occur in the mitochondria of virus-specific TM down-stream of the autophagy are regulated.
View Article and Find Full Text PDFExp Eye Res
December 2024
Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Canada. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!