Histologic data describing the depth of penetration that occurs with the CO2 laser using variations in delivered energy, number of passes, and density settings have been limited. Most of the initial studies used a 3-mm collimated handpiece; few studies used the computerized pattern generator, which is now standard in treatment. This study examined histologic depth of thermal damage with varying density settings and number of passes using the computerized pattern generator. The Coherent UltraPulse 5000 CO2 laser with a computerized pattern generator was used. Preauricular (sun-exposed) and postauricular (sun-protected) facial skin samples were used from seven rhytidectomy patients aged 37 to 68 years. Preoperative skin treatment regimen included Retin-A and hydroquinone application for 3 weeks before the procedure. Three adjacent sites from the preauricular and postauricular regions were chosen from each ear (12 sites per patient). A density setting of 5 (30 percent overlap) was chosen for the right ear, and a density setting of 9 (60 percent overlap) was used for the left ear. Each region was subjected to one, two, and three passes. The laser delivers approximately 7.5 J/cm2 of fluence at a spot size of 2.25 mm and 300 mJ. Excisional biopsies were performed at the time of cervicofacial flap redraping. All specimens were evaluated for depth of thermal damage by a dermatopathologist who was blinded to the treatment parameters for each test site. Histologic examination of the treated test sites consistently demonstrated that one pass at these settings obliterated most or all of the epidermis, with minimal invasion into the papillary dermis. Test sites treated with two or three passes resulted in increased cumulative depth of penetration and thermal injury into the papillary dermis. Only one sample site showed any thermal injury extending into the reticular dermis. Depth of penetration was greater at the postauricular sites. Additionally, depth of penetration was greater with a density of 9 (60 percent overlap) than one of 5 (30 percent overlap) in both the preauricular and postauricular sites. Our study supported previous observations that the cumulative depth of penetration is greater with increasing levels of energy and additional passes. Additionally, we saw a greater average depth of penetration as density overlap increased, as one would predict. However, at these settings, fewer passes at a higher density setting did not achieve the same depth of penetration as more passes at a lower density setting. Furthermore, we found that the margin of safety using these settings is high: only 1 of 84 sites extended into the reticular dermis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00006534-199912000-00048 | DOI Listing |
Chem Commun (Camb)
January 2025
Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab-140 001, India.
Low-energy photoredox catalysis has gained significant attention in developing organic transformations due to its ability to achieve high penetration depth and minimum health risks. Herein, we disclose a red-light ( = 640 nm)-mediated C-3 formylation of indoles utilizing a helical carbenium ion as a photocatalyst and 2,2-dimethoxy-,-dimethylethanamine as a formylating source. These protocols exhibit a broad substrate scope under mild conditions with efficient scalability for the synthesis of C-3 formylated indoles.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
The escalating hazards posed by bacterial infections underscore the imperative for pioneering advancements in next-generation antibacterial modalities and treatments. Present therapeutic methodologies are frequently impeded by the constraints of insufficient biofilm infiltration and the absence of precision in pathogen-specific targeting. In this current study, we have used chlorin e6 (Ce6), zeolitic imidazolate framework-8 (ZIF-8), polydopamine (PDA), and UBI peptide to formulate an innovative nanosystem meticulously engineered to confront bacterial infections and effectually dismantle biofilm architectures through the concerted mechanism of photodynamic therapy (PDT)/photothermal therapy (PTT) therapies, including in-depth research, especially for oral bacteria and oral biofilm.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #07-01, Nanos, Singapore, 138669, Republic of Singapore.
Purpose: Basal Cell Carcinoma (BCC), the most common subtype of non-melanoma skin cancers (NMSC), is prevalent worldwide and poses significant challenges due to their increasing incidence and complex treatment considerations. Existing clinical approaches, such as Mohs micrographic surgery, are time-consuming and labour-intensive, requiring meticulous layer-by-layer excision and examination, which can significantly extend the duration of the procedure. Current optical imaging solutions also lack the necessary spatial resolution, penetration depth, and contrast for effective clinical use.
View Article and Find Full Text PDFPurpose: To make micro-CT comparison and evaluation of sealant penetration depth in different types of fissures after heating of the material or application of vibrations.
Materials And Methods: One hundred sound third molars have been sealed as follows: group 1 (n = 20), light-cured resin sealant at room temperature, group 2 (n = 20), light-cured resin sealant, preheated to 41.0°C, group 3 (n = 20), light-cured resin sealant, preheated to 51.
Langmuir
January 2025
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany.
Near-infrared (NIR) controlled drug delivery systems have drawn a lot of attention throughout the past few decades due to the deep penetration depth and comparatively minor side effects of the stimulus. In this study, we introduce an innovative approach for gastric cancer treatment by combining photothermal infrared-sensitive gold nanorods (AuNRs) with a conjugated microporous polymer (CMP) to create a drug delivery system tailored for transporting the cytostatic drug 5-fluorouracil (5-FU). CMPs are fully conjugated networks with high internal surface areas that can be precisely tailored to the adsorption and transport of active compounds through the right choice of chemical functionalities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!