Cellulose and xylan degrading enzymes in Thecotheus pelletieri.

Rev Argent Microbiol

Laboratorio de Micología Experimental, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina.

Published: January 2001

The ability to produce cellulose and xylan degrading enzymes by different strains of Thecotheus pelletieri, in liquid synthetic media with cellulose and xylan as inducers, was compared. All the strains tested were able to grow and produce cellulases and xylanases, being the strain BAFC 2077 the best producer. Several cultural conditions were analysed in order to optimise enzyme production by strain 2077. Shaking cultures gave higher yields of cellulases and xylanases compared with stationary ones. Asparagine at 0.75 g N/L was the best nitrogen source in promoting enzyme production. The influence of different surfactants on enzyme production was studied. Tween 80 exhibited no effect on growth and enzyme production, whereas Tween 20 and Triton X-100 were inhibitory. By means of studies of variation of cellulose/xylan ratio in the culture medium we determined that cellulose and xylan induced cellulase and xylanase synthesis, being the specific substrates the most effective. The inducible behavior of cellulases and xylanases in T. pelletieri was determined by means of inhibition of protein synthesis by cycloheximide and ethidium bromide. Moreover, we found that glucose as well as xylose repressed cellulase and xylanase synthesis in T. pelletieri.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cellulose xylan
16
enzyme production
16
cellulases xylanases
12
xylan degrading
8
degrading enzymes
8
thecotheus pelletieri
8
cellulase xylanase
8
xylanase synthesis
8
cellulose
4
enzymes thecotheus
4

Similar Publications

We report a facile fractionation strategy using choline hydroxide (ChOH) based alkaline deep eutectic solvents (DES) for whole-component upgrading of bagasse. Through selective lignin and xylan dissolution, along with extensive biomass swelling, high-value lignin-carbohydrate complexes (LCC, with high β-O-4 bond content of 68.9/100 Ar) and high-purity xylan were extracted without compromising cellulose recovery and hydrolysis.

View Article and Find Full Text PDF

sp. nov., isolated from surface of the maize () roots in a horticulture field, Hungary.

Int J Syst Evol Microbiol

January 2025

Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gdll, Hungary.

A novel Gram-stain-positive, rod-shaped, endospore-forming bacterium with peritrichous flagella, designated as P96 was isolated from the surface of maize roots. Strain P96 grew optimally at 28 °C, pH 7.0.

View Article and Find Full Text PDF

Seed shattering (SS) functions are a survival mechanism in plants, enabling them to withstand adverse environmental conditions and ensure reproduction. However, this trait limits seed yield. , a perennial forage grass with many favorable traits, is constrained by SS, limiting its broader application.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored the effects of a specific enzyme (FAEA) expressed in maize that targets the apoplast, focusing on its activity during the late stages of plant senescence and after storing the plant material.
  • FAEA levels increased until the reproductive (R) stage but dropped during full leaf senescence (R+), while the enzyme remained stable even after six months of cold storage.
  • The research found that FAEA expression led to decreased cell wall components like ferulates and improved the breakdown (saccharification) of plant material by enzymes, making it easier to extract sugars at later development stages.
View Article and Find Full Text PDF
Article Synopsis
  • * Overexpression of MaFLA27 led to increased expression of genes involved in cell wall components and modification, contributing to thicker cell walls and higher levels of cellulose, lignin, and certain pectins in plants.
  • * In contrast to wild-type plants, MaFLA27-overexpressing plants showed lower levels of pectin methyl-esterification and reduced reactive oxygen species after cold exposure, indicating a potential mechanism for improved cold tolerance linked to cell wall modifications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!