Foamy viruses (FV) are complex retroviruses which are widespread in many species. Despite being discovered over 40 years ago, FV are among the least well characterized retroviruses. The replication of these viruses is different in many interesting respects from that of all other retroviruses. Infection of natural hosts by FV leads to a lifelong persistent infection, without any evidence of pathology. A large number of studies have looked at the prevalence of primate foamy viruses in the human population. Many of these studies have suggested that FV infections are prevalent in some human populations and are associated with specific diseases. More recent data, using more rigorous criteria for the presence of viruses, have not confirmed these studies. Thus, while FV are ubiquitous in all nonhuman primates, they are only acquired as rare zoonotic infections in humans. In this communication, we briefly discuss the current status of FV research and review the history of FV epidemiology, as well as the lack of pathogenicity in natural, experimental, and zoonotic infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC88968 | PMC |
http://dx.doi.org/10.1128/CMR.14.1.165-176.2001 | DOI Listing |
Infect Genet Evol
December 2024
Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China. Electronic address:
The prevalence and evolution of foamy viruses (FVs) have become the focus of research because of the risk of new zoonotic diseases. FVs have been isolated from various mammals and exhibit long-term co-speciation with their hosts. They also appear to be mild and nonpathogenic to their hosts.
View Article and Find Full Text PDFVirology
January 2025
Department of Systems Biotechnology, Chung-Ang University, Anseong, 17456, Republic of Korea. Electronic address:
Foamy virus (FV) is a retrovirus with a safer integration profile than other retroviruses, rendering it appealing for gene therapy. Prototype FV (PFV) vector systems have been devised to yield high-titer vectors carrying large transgenes. Subsequent iterations of PFV vectors have been engineered to be replication-incompetent, enhancing their safety.
View Article and Find Full Text PDFSci Adv
October 2024
Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France.
Foamy viruses (FVs) constitute a subfamily of retroviruses. Their envelope (Env) glycoprotein drives the merger of viral and cellular membranes during entry into cells. The only available structures of retroviral Envs are those from human and simian immunodeficiency viruses from the subfamily of orthoretroviruses, which are only distantly related to the FVs.
View Article and Find Full Text PDFMol Ther Oncol
September 2024
Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
Chimeric antigen receptor (CAR) T cells have had limited success against solid tumors. Here, we used an oncolytic foamy virus (oFV) to display a model CAR target antigen (CD19) on tumors in combination with anti-CD19 CAR T cells. We generated oFV-Δ and oFV- vectors to test the efficiency and stability of viral/CD19 spread.
View Article and Find Full Text PDFCell
August 2024
Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK. Electronic address:
Foamy viruses (FVs) are an ancient lineage of retroviruses, with an evolutionary history spanning over 450 million years. Vector systems based on Prototype Foamy Virus (PFV) are promising candidates for gene and oncolytic therapies. Structural studies of PFV contribute to the understanding of the mechanisms of FV replication, cell entry and infection, and retroviral evolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!