Tumor angiogenesis.

J Investig Dermatol Symp Proc

Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown 02129, USA.

Published: December 2000

In order to grow beyond minimal size and to metastasize, tumors need to induce the growth of new blood vessels (angiogenesis). Whereas in normal tissues, vascular quiescence is maintained by the dominant influence of endogenous angiogenesis inhibitors over angiogenic stimuli, tumor angiogenesis is induced by increased secretion of angiogenic factors and/or by downregulation of angiogenesis inhibitors. Recent evidence suggests vascular endothelial growth factor (VEGF) as the major tumor angiogenesis factor, promoting tumor growth, invasion, and metastasis. Conversely, blocking of VEGF function inhibits angiogenesis and suppresses tumor growth in vivo. Newly identified members of the VEGF family of angiogenesis factors include placental growth factor, VEGF-B, VEGF-C, and VEGF-D, and show overlapping binding patterns to specific endothelial cell receptors. VEGF-C appears to play a major role as a lymphangiogenesis factor and as a growth factor for Kaposi's sarcoma. In contrast, endogenous inhibitors prevent blood vessel growth in normal tissues. In particular, thrombospondin-1 (TSP-1) and TSP-2 are expressed in normal skin and, when introduced into squamous cell carcinomas, potently inhibit malignant tumor growth via inhibition of tumor angiogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1087-0024.2000.00003.xDOI Listing

Publication Analysis

Top Keywords

tumor angiogenesis
16
growth factor
12
tumor growth
12
growth
8
angiogenesis
8
normal tissues
8
angiogenesis inhibitors
8
tumor
7
factor
5
angiogenesis order
4

Similar Publications

Hemorrhagic stroke is a known complication of glioma, yet the underlying mechanisms remain poorly understood. This study aims to investigate key biomarkers of glioma-related hemorrhage to provide insights into glioma molecular therapies. Data were obtained from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases to analyze differentially expressed genes (DEGs) in glioma by contrasting glioblastoma (GBM) with low-grade gliomas (LGGs).

View Article and Find Full Text PDF

Integrin antagonist complex (IAC), a novel αvβ3 integrin antagonist peptidomimetic, has emerged as a promising agent for molecular imaging of tumor angiogenesis. This study evaluates the biodistribution and clinical efficacy of [Ga]Ga-DOTAGA-IAC PET/CT in detecting radioiodine-refractory differentiated thyroid carcinoma (RAIR-DTC), comparing its diagnostic performance with [F]F-FDG PET/CT. In this prospective pilot study, RAIR-DTC patients underwent whole-body imaging with [F] F-FDG PET/CT, followed by [Ga]Ga-DOTAGA-IAC PET/CT.

View Article and Find Full Text PDF

Background: Ovarian cancer is difficult to detect in its early stages, and it has a high potential for invasion and metastasis, along with a high rate of recurrence. These factors contribute to the poor prognosis and reduced survival times for patients with this disease. The effectiveness of conventional chemoradiotherapy remains limited.

View Article and Find Full Text PDF

Many cancers have displayed resistance to chemotherapeutic drugs over the past few decades. EGFR has emerged as a leading target for cancer therapy inhibiting tumor angiogenesis. Besides, studies strongly suggest that blocking telomerase activity could be an effective way to control the growth of certain cancer cells.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer is a particularly aggressive type of breast cancer that is closely associated with abnormal vascularization within the tumor. However, traditional anti-VEGF therapies and other treatments have limited efficacy. Tumor-associated macrophages (TAMs) induce and regulate tumor angiogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!