Since most brain glycoproteins from beta-1,4-galactosyltransferase (beta-1,4-GalT) I knockout mice were galactosylated without apparent reduction the gene expression of novel beta-1,4-GalTs II and V which are involved in N-linked oligosaccharide biosynthesis in addition to beta-1,4-GalT I was studied during mouse brain development. Isolation and characterization of beta-1,4-GalT II and V cDNAs from mouse brains indicates that they are also functioning in the brain. Northern blot analysis revealed that the beta-1,4-GalT I gene is expressed mainly in mid-embryonic stages, while the expression level of beta-1,4-GalT II transcript remains constant and of beta-1,4-GalT V transcript increases during mouse brain development after birth. In situ hybridization revealed that beta-1,4-GalT II and V signals are present in most neural cells, with a marked difference between them in the hippocampus of adult mouse brain tissue. The differential gene expression of beta-1,4-GalTs I, II and V during mouse brain development could affect the differential galactosylation of brain glycoproteins, as revealed by lectin blot analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1471-4159.2001.00004.x | DOI Listing |
Brain
January 2025
Institute of Neurological Sciences and Psychiatry, Hacettepe University, 06100, Ankara, Turkey.
Cortical spreading depolarization (CSD), the neurophysiological event believed to underlie aura, may trigger migraine headaches through inflammatory signaling that originates in neurons and spreads to the meninges via astrocytes. Increasing evidence from studies on rodents and migraine patients supports this hypothesis. The transition from pro-inflammatory to anti-inflammatory mechanisms is crucial for resolving inflammation.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder characterized by a range of clinical manifestations with no effective treatment strategy to date. Here, transplantation of GABAergic precursor cells from the medial ganglionic eminence (MGE) is demonstrated to significantly improve cognitive performance in Fmr1 knockout (KO) mice. Within the hippocampus of Fmr1-KO mice, MGE-derived cells from wild-type donor mice survive, migrate, differentiate into functionally mature interneurons, and form inhibitory synaptic connections with host pyramidal neurons.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pain Medicine, Aichi Medical University, Nagakute, Aichi, Japan.
Background: Lowering barometric pressure (LP) can exacerbate neuropathic pain. However, animal studies in this field are limited to a few conditions. Furthermore, although sympathetic involvement has been reported as a possible mechanism, whether the sympathetic nervous system is involved in the hypothalamic-pituitary-adrenal (HPA) axis remains unknown.
View Article and Find Full Text PDFJ Neurochem
January 2025
Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Enhancing protein O-GlcNAcylation by pharmacological inhibition of the enzyme O-GlcNAcase (OGA) has been considered as a strategy to decrease tau and amyloid-beta phosphorylation, aggregation, and pathology in Alzheimer's disease (AD). There is still more to be learned about the impact of enhancing global protein O-GlcNAcylation, which is important for understanding the potential of using OGA inhibition to treat neurodegenerative diseases. In this study, we investigated the acute effect of pharmacologically increasing O-GlcNAc levels, using the OGA inhibitor Thiamet G (TG), in normal mouse brains.
View Article and Find Full Text PDFSci Adv
January 2025
State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China.
Acute alcohol intoxication could cause multiorgan damage, including nervous, digestive, and cardiovascular systems, and in particular, irreversible damage to the brain and liver. Emerging studies have revealed that the endogenous multienzymatic antioxidant defense system (MEAODS) plays a central role in preventing oxidative stress and other toxicological compounds produced by alcohol. However, few available drugs could quickly regulate MEAODS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!