Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
By utilizing a baculoviral expression system described previously (Cascio, M., Schoppa, N. E., Grodzicki, R. L., Sigworth, F. J., and Fox, R. O. (1993) J. Biol. Chem. 268, 22135-22142), functional recombinant homomeric human alpha(1)-glycine receptors (GlyR) were overexpressed in insect cell culture, solubilized, purified, and reconstituted into lipid vesicles via gel filtration. Reconstituted GlyR channels were observed to retain native-like activity in single channel recordings of planar bilayers and in flux assays of small unilamellar vesicles, providing evidence that the recombinant homomeric receptor may be functionally reconstituted. This reconstitution is significant in that it indicates that the overexpressed homomeric receptor is an appropriate substrate for subsequent biophysical characterization aimed at the general elucidation of structure-function. Circular dichroism spectroscopy of reconstituted GlyR indicated a low alpha-helical content and a significant fraction of polyproline structure. The small fraction of observed alpha-helix is insufficient to accommodate the four helical transmembrane domains proposed in models for this receptor. By inference, other members of the homologous ligand-gated channel superfamily, which include the ionotropic gamma-aminobutyric acid, acetylcholine, and serotonin receptors, may also be erroneously modeled, and alternate models should be considered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M010968200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!