The statistical distribution of von Mises stress in the trabeculae of human vertebral cancellous bone was estimated using large-scale finite element models. The goal was to test the hypothesis that average trabecular von Mises stress is correlated to the maximum trabecular level von Mises stress. The hypothesis was proposed to explain the close experimental correlation between apparent strength and stiffness of human cancellous bone tissue. A three-parameter Weibull function described the probability distribution of the estimated von Mises stress (r2>0.99 for each of 23 cases). The mean von Mises stress was linearly related to the standard deviation (r2=0.63) supporting the hypothesis that average and maximum magnitude stress would be correlated. The coefficient of variation (COV) of the von Mises stress was nonlinearly related to apparent compressive strength, apparent stiffness, and bone volume fraction (adjusted r2=0.66, 0.56, 0.54, respectively) by a saturating exponential function [COV = A + B exp(-x/C)]. The COV of the stress was higher for low volume fraction tissue (<0.12) consistent with the weakness of low volume fraction tissue and suggesting that stress variation is better controlled in higher volume fraction tissue. We propose that the average stress and standard deviation of the stress are both controlled by bone remodeling in response to applied loading.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1114/1.1318928 | DOI Listing |
J Orthop Surg Res
January 2025
The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510378, P. R. China.
Background: The location and size of necrotic lesions are important factors for collapse, The preserved angles (PAs) are divided into anterior preserved angle (APA) and lateral preserved angle (LPA), which could accurately measure the location of necrosis lesion. We used them to evaluate the effect of the location and size of necrotic lesions on collapse by finite element analysis, to offer a framework for evaluating the prognosis of osteonecrosis of the femoral head (ONFH) in clinical settings.
Methods: 3 left hip models were constructed based on CT data.
J Craniofac Surg
January 2025
Department of Oral and Maxillofacial & Head and Neck Oncology, Capital Medical University School of Stomatology, Beijing, China.
Objective: This study aimed to compare the biomechanics of implant prostheses and peri-implant bone among 6 different mandibular reconstruction models based on patient data involving the use of an upper free-end double-barrel fibula.
Methods: This study was an observational study. Five models were reconstructed using fibular-supported and implant-supported partial dentures.
iScience
January 2025
School of Civil Engineering and Architecture, Zhejiang University of Science & Technology, Hangzhou, P.R. China.
A possibility of unprecedented architecture may be opened up by combining both vertical and in-plane heterostructures. It is fascinating to discover that the interlayer stress transfer, interlayer binding energy, and interlayer shear stress of bi-layer Gr/hBN with CNTs heterostructures greatly increase (more than 2 times) with increase the numbers of CNTs and both saturate at the numbers of CNTs = 3, but it causes only 10.92% decrease in failure strain.
View Article and Find Full Text PDFJ Orthop Res
January 2025
Australian Centre for Precision Health and Technology (PRECISE), Griffith University, Gold Coast, Australia.
Effective surgical planning is crucial for maximizing patient outcomes following complex orthopedic procedures such as proximal femoral osteotomy. In silico simulations can be used to assess how surgical variations in proximal femur geometry, such as femur neck-shaft and anteversion angles, affect postoperative system mechanics. This study investigated the sensitivity of femur mechanics to postoperative neck-shaft angles, anteversion angles, and osteotomy contact areas using patient-specific finite element analysis informed by neuromusculoskeletal models.
View Article and Find Full Text PDFJOR Spine
March 2025
Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering Beihang University Beijing China.
Background: Growth rods are the gold standard for treating early-onset scoliosis (EOS). However, current treatments with growth rods do not optimize spinal growth in EOS patients, and frequent distraction surgeries significantly increase complications, imposing considerable economic and psychological burdens on patients. An improved growth rod is urgently required to address the need for dynamic growth and external regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!