A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The effects of age and dietary restriction without nutritional supplementation on whole bone structural properties in C57BL/6J mice. | LitMetric

While caloric restriction is a proven means to extend longevity, its effects on bone are not well understood. This study examined the effects of dietary restriction without vitamin or mineral supplementation on bone in female 60- and 120-day-old C57BL/6J mice. Baseline controls were sacrificed at 60 or 120 days, while diet-restricted animals ate approximately 72.9-78.6% of the ad libitum fed animals for thirty days. 60-day-old ad libitum animals experienced normal growth with average increases of 6.4% in bone length, 23.5% in bone mass, 9.4% in %mineralization, 36.4% in maximum strength, 59.2% in stiffness, 22.3% in cortical thickness, 12.9% in %cortical area, and 11.3% in microhardness. Growth in 120-day-old ad libitum animals followed a trend but with more modest increases. Diet-restricted mice matured very little from baseline levels in 60-day-old animals. There were no significant changes from baseline levels in the parameters indicated above, except for a 8.3% decrease in %cortical area attributable to increased resorption. 120-day-old diet-restricted animals also evidenced little deviation from baseline levels except for significant decreases in %mineralization (2.1%) and %cortical area (6.7%). The effects of diet restriction on bone properties decreased with age. Bone from 60-day-old diet-restricted mice showed diminished mechanical and compositional properties, resulting from little growth and excess resorption. Bone from 120-day-old diet-restricted mice showed little growth and some resorption. Increased resorption, localized on the endosteal surfaces, likely minimized the negative impact of structural degradation of the long bones. Resorption may have also provided minerals to compensate for nutritional deficiencies.

Download full-text PDF

Source

Publication Analysis

Top Keywords

%cortical area
12
diet-restricted mice
12
baseline levels
12
dietary restriction
8
bone
8
supplementation bone
8
c57bl/6j mice
8
diet-restricted animals
8
libitum animals
8
increased resorption
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!