Angiotensin-converting enzyme (ACE) inhibition attenuates insulin-like growth factor-I (IGF-I) induced cardiac fibroblast proliferation.

Br J Pharmacol

Medizinische Universitäts-Poliklinik, University of Bonn, Wilhelmstrasse 35-37, 53111 Bonn, Germany.

Published: December 2000

The effects of angiotensin-converting enzyme (ACE) inhibition and angiotensin type 1 (AT(1)) receptor blockade on insulin-like growth factor-I (IGF-I) induced proliferation and immediate-early-gene expression of neonatal rat cardiac fibroblasts were investigated. Moreover the role of the IGF-I receptor (IGF-IR) in this process was evaluated. IGF-I (10(-9) - 10(-7) M) stimulated neonatal rat cardiac fibroblast growth in a dose-dependent fashion (maximum: 3.5+/-0.1 fold, 10(-7) M), as determined by 5-bromo-2'-deoxyuridine (BrdU) incorporation. ACE inhibition or AT(1) receptor blockade attenuated the IGF-I (10(-7) M) induced neonatal rat cardiac fibroblast growth in a concentration-dependent fashion (moexiprilat: 50+/-2%, enalaprilat: 31+/-2%, CV11974; 58+/-1%, all: 10(-7) M). IGF-I stimulated cellular growth was accompanied by an upregulation of the immediate early genes c-Fos (2.4+/-0.3 fold), Egr-1 (4.7+/-1.1 fold) and Sp1 (6.2+/-0.7 fold). IGF-I induced expression was completely inhibited by ACE inhibition or AT(1) receptor blockade. Stimulation with IGF-I or Ang II (10(-7) M) increased IGF-IR expression 5.7+/-0. 5 fold and 3.6+/-0.5 fold respectively. The IGF-I induced overexpression of the IGF-IR was reduced by ACE inhibition with moexiprilat (10(-7) M) by 79+/-7% and by AT(1) receptor blockade with CV11974 (10(-7) M) by 79+/-5%. These data demonstrate that the mitogenic action of IGF-I in neonatal rat cardiac fibroblasts is in part mediated by activation of the renin-angiotensin system (RAS) with subsequent upregulation of IGF-IR expression. This observation has important implications for the treatment of cardiac diseases with ACE inhibitors alone and their combination with IGF-I or growth hormone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1572499PMC
http://dx.doi.org/10.1038/sj.bjp.0703740DOI Listing

Publication Analysis

Top Keywords

ace inhibition
20
igf-i induced
16
at1 receptor
16
receptor blockade
16
neonatal rat
16
rat cardiac
16
cardiac fibroblast
12
igf-i
11
angiotensin-converting enzyme
8
enzyme ace
8

Similar Publications

Ferulic acid (FA) is a phenolic compound obtained naturally and is a versatile antioxidant identified for its potential in managing hypertension. However, its application is constrained due to its classification as a BCS Class IV moiety. To address this, we concentrated on improving its solubility and permeability by developing nanostructured lipid carriers (NLCs) of FA using emulsification probe sonication technique.

View Article and Find Full Text PDF

Research Progress of Food-Derived Antihypertensive Peptides in Regulating the Key Factors of the Renin-Angiotensin System.

Nutrients

December 2024

Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.

Food protein-derived antihypertensive peptides have attracted substantial attention as a safer alternative for drugs. The regulation of the renin-angiotensin system (RAS) is an essential aspect underlying the mechanisms of antihypertensive peptides. Most of the identified antihypertensive peptides exhibit the angiotensin-converting enzyme (ACE) inhibitory effect.

View Article and Find Full Text PDF

This comprehensive review explores the biological functions of seed proteins and peptides, highlighting their significant potential for health and therapeutic applications. This review delves into the mechanisms through which perilla peptides combat oxidative stress and protect cells from oxidative damage, encompassing free radical scavenging, metal chelating, in vivo antioxidant, and cytoprotective activities. Perilla peptides exhibit robust anti-aging properties by activating the Nrf2 pathway, enhancing cellular antioxidant capacity, and supporting skin health through the promotion of keratinocyte growth, maintenance of collagen integrity, and reduction in senescent cells.

View Article and Find Full Text PDF

Direct Vascular Effects of Angiotensin II (A Systematic Short Review).

Int J Mol Sci

December 2024

Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary.

The octapeptide angiotensin II (Ang II) is a circulating hormone as well as a locally formed agonist synthesized by the angiotensin-converting enzyme (ACE) of endothelial cells. It forms a powerful mechanism to control the amount and pressure of body fluids. All main effects are directed to save body salt and water and ensure blood pressure under basic conditions and in emergencies.

View Article and Find Full Text PDF

Signaling Transduction Network Elucidation of ACE 2 Regulating Autolysis by Using Integrative TMT Proteomics and Transcriptomics.

J Agric Food Chem

January 2025

National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China.

This study aims to reveal the transduction signaling network that triggers sea cucumber () autolysis. The tandem mass tag (TMT) proteomics and transcriptomic techniques were used to analyze expression differences between inhibited and activated sea cucumber autolysis. Flow cytometry was used to identify apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!