Mitochondrial priming modifies Ca2+ oscillations and insulin secretion in pancreatic islets.

Biochem J

Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, U.K.

Published: January 2001

AI Article Synopsis

  • Recent research indicates that increases in mitochondrial calcium levels ([Ca(2+)](m)) can lead to lasting changes in ATP production within cells.
  • The study focused on pancreatic islets and beta-cells, using imaging techniques to measure changes in calcium and ATP levels when stimulated by substances like KCl and tolbutamide.
  • The findings suggest that pre-stimulation with these agents enhances the cells' ATP response to higher glucose levels, implying that long-term changes in mitochondrial ATP synthesis are crucial for how these cells sense nutrients.

Article Abstract

Increases in mitochondrial [Ca(2+)] ([Ca(2+)](m)) have recently been reported to cause long-term alterations in cellular ATP production [Jouaville, Bastianutto, Rutter and Rizzuto (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 13807-13812]. We have determined the importance of this phenomenon for nutrient sensing in pancreatic islets and beta-cells by imaging adenovirally expressed Ca(2+) and ATP sensors (aequorin and firefly luciferase). [Ca(2+)](m) increases provoked by KCl or tolbutamide evoked an immediate increase in cytosolic and mitochondrial free ATP concentration ([ATP](c) and [ATP](m) respectively) at 3 mM glucose. Subsequent increases in [glucose] (to 16 or 30 mM) then caused a substantially larger increase in [ATP](c) and [ATP](m) than in naïve cells, and pre-stimulation with tolbutamide led to a larger secretory response in response to glucose. Whereas pre-challenge of islets with KCl altered the response to high [glucose] of [Ca(2+)](m) from periodic oscillations to a sustained elevation, oscillations in [ATP](c) were observed neither in naïve nor in stimulated islets. Hence, long-term potentiation of mitochondrial ATP synthesis is a central element in nutrient recognition by pancreatic islets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1221556PMC
http://dx.doi.org/10.1042/0264-6021:3530175DOI Listing

Publication Analysis

Top Keywords

pancreatic islets
12
[atp]c [atp]m
8
islets
5
mitochondrial
4
mitochondrial priming
4
priming modifies
4
modifies ca2+
4
ca2+ oscillations
4
oscillations insulin
4
insulin secretion
4

Similar Publications

Potential trend of regenerative treatment for type I diabetes has been introduced for more than a decade. However, the technologies regarding insulin-producing cell (IPC) production and transplantation are still being developed. Here, we propose the potential IPC production protocol employing mouse gingival fibroblast-derived induced pluripotent stem cells (mGF-iPSCs) as a resource and the pre-clinical approved subcutaneous IPC transplantation platform for further clinical confirmation study.

View Article and Find Full Text PDF

Although islet transplantation is effective in reducing severe hypoglycemia events and controlling blood glucose in patients with type 1 diabetes, maintaining islet graft function long-term is a significant challenge. Islets from multiple donors are often needed to achieve insulin independence, and even then, islet function can decline over time when metabolic demand exceeds islet mass/insulin secretory capacity. We previously developed a method that calculated the islet graft function index (GFI) and a patient's predicted insulin requirement (PIR) using mathematical nonlinear regression.

View Article and Find Full Text PDF

Compared to primary pancreatic islets, insulinoma cell-derived 3D pseudoislets offer a more accessible, consistent, renewable, and widely applicable model system for optimization and mechanistic studies in type 1 diabetes (T1D). Here, we report a simple and efficient method for generating 3D pseudoislets from MIN6 and NIT-1 murine insulinoma cells. These pseudoislets are homogeneous in size and morphology (~150 µm), exhibit functional glucose-stimulated insulin secretion (GSIS) up to 18 days (NIT-1) enabling long-term studies, are produced in high yield [>35,000 Islet Equivalence from 30 ml culture], and are suitable for both and studies, including for encapsulation studies.

View Article and Find Full Text PDF

The hypoglycemic effects of nateglinide (NTG) were examined in rats with acute peripheral inflammation (API) induced by carrageenan treatment, and the mechanisms accounting for altered hypoglycemic effects were investigated. NTG was administered through the femoral vein in control and API rats, and its plasma concentration profile was characterized. The time courses of the changes in plasma glucose and insulin levels were also examined.

View Article and Find Full Text PDF

Updates in the Management of Chronic Pancreatitis: Navigating Through Recent Advances.

Gastroenterol Clin North Am

March 2025

Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA. Electronic address:

This article provides an up-to-date review of the management of chronic pancreatitis, highlighting advancements in medical therapy, nutritional support, endoscopic and surgical approaches, and emerging treatments. Nutritional management accentuates addressing malabsorption and nutrient deficiencies. Advances in endoscopy and parenchyma-sparing surgical techniques have opened new avenues for improved patient outcomes, with total pancreatectomy and islet autotransplantation offering the only definitive solution for selected patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!