Isolated glucocorticoid deficiency (IGD) is an autosomal recessive disorder characterized by primary adrenocortical insufficiency, without mineralocorticoid deficiency. Mutations of the ACTH receptor gene have been reported in several families with IGD. We have amplified and directly sequenced the entire intronless ACTH receptor gene in a new family with IGD. The proband was found to be compound heterozygote for two different point mutations, one in each allele: (a) a substitution (360C>G) which changed neutral serine at position 120 in the apolar third transmembrane domain of the receptor to a positively charged arginine (S120R), probably disrupting the ligand-binding site; and (b) a substitution (761A>G) changing tyrosine at position 254 to cysteine (Y254C) in the third extracellular loop of the receptor protein, that also likely disrupts its structure and interferes with ligand binding. Each of the two mutations in the proband has previously been described in a different family, S120R in compound heterozygosity with a stop codon (R201X) and Y254C in homozygote form. Thus, in the absence of in vitro functional studies, our findings confirm the pathogenetic role of the S120R and Y254C mutants in the development of resistance to ACTH.

Download full-text PDF

Source
http://dx.doi.org/10.1006/mgme.2000.3090DOI Listing

Publication Analysis

Top Keywords

acth receptor
12
receptor gene
12
mutations acth
8
gene family
8
isolated glucocorticoid
8
glucocorticoid deficiency
8
receptor
5
mutations
4
family isolated
4
deficiency isolated
4

Similar Publications

Background: The growth in obesity and rates of abdominal obesity in developing countries is due to the dietary transition, meaning a shift from traditional, fiber-rich diets to Westernized diets high in processed foods, sugars, and unhealthy fats. Environmental changes, such as improving the quality of dietary fat consumed, may be useful in preventing or mitigating the obesity or unhealthy obesity phenotype in individuals with a genetic predisposition, although this has not yet been confirmed. Therefore, in this study, we investigated how dietary fat quality indices with metabolically healthy obesity (MHO) or metabolically unhealthy obesity (MUO) based on the Karelis criterion interact with genetic susceptibility in Iranian female adults.

View Article and Find Full Text PDF

This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.

View Article and Find Full Text PDF

Vitiligo is a complex autoimmune disease characterized by the loss of melanocytes, leading to skin depigmentation. Despite advances in understanding its genetic and molecular basis, the precise mechanisms driving vitiligo remain elusive. Integrating multiple layers of omics data can provide a comprehensive view of disease pathogenesis and identify potential therapeutic targets.

View Article and Find Full Text PDF

regulates melanocortin 4 receptor transcription and energy homeostasis.

Sci Transl Med

January 2025

Hypothalamic Research Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas TX, 75390, USA.

Disruption of hypothalamic melanocortin 4 receptors (MC4Rs) causes obesity in mice and humans. Here, we investigated the transcriptional regulation of in the hypothalamus. In mice, we show that the homeodomain transcription factor Orthopedia (OTP) is enriched in MC4R neurons in the paraventricular nucleus (PVN) of the hypothalamus and directly regulates transcription.

View Article and Find Full Text PDF
Article Synopsis
  • Peripuberty is a crucial time for brain development, and blocking CRFR1 receptors in young rats helps minimize negative effects of early-life stress on neural function and behavior.
  • In an experiment, male rats showed immediate behavioral changes like reduced prepulse inhibition (PPI) after receiving a CRFR1 antagonist, while females only exhibited differences in behavior after becoming adults.
  • Long-term gene expression changes in the amygdala indicate that the effects of CRFR1 blockage during peripuberty impact different neural pathways in males and females, emphasizing the importance of understanding these effects for adolescent mental health.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!