The central aromatic amino acid DOPA decarboxylase inhibitor, NSD-1015, does not inhibit L-DOPA-induced circling in unilateral 6-OHDA-lesioned-rats.

Eur J Neurosci

Neurodegenenerative Disease Research Centre, Division of Pharmacology & Therapeutics, Guy's, King's and St Thomas' School of Biomedical Sciences, King's College, London, Guy's Campus, London, SE1 1UL, UK.

Published: January 2001

The centrally acting aromatic amino acid dopa decarboxylase (AADC) inhibitor, 3-hydroxybenzyl hydrazine (NSD-1015), is widely used to study the neurotransmitter-like actions of L-DOPA. However, the effects of NSD-1015 on L-DOPA-induced motor activity are unclear as both increases and decreases have been reported. We now investigate the effects of NSD-1015 on L-DOPA-induced contralateral circling behaviour in 6-OHDA-lesioned rats and on striatal levels of L-DOPA, 3-O-methyl-DOPA (3-OMD), dopamine, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) using microdialysis techniques. NSD-1015 (50-200 mg/kg i.p.) inhibited AADC activity both in the liver and striatum of normal rats. Administration of NSD-1015 (50-200 mg/kg i.p.), delayed the onset of circling produced by administration of L-DOPA (25 mg/kg i.p.) and carbidopa (12.5 mg/kg i. p.), suggesting blockade of central AADC activity. However, the duration of the L-DOPA-induced circling was prolonged and overall no inhibition of circling behaviour occurred. L-DOPA (25 mg/kg i.p.) plus carbidopa (12.5 mg/kg i.p.) increased extracellular levels of L-DOPA, 3-OMD, dopamine, DOPAC and HVA in the 6-OHDA-lesioned striatum. Pretreatment of rats with the central AADC inhibitor, NSD-1015 (100 mg/kg i.p.), potentiated the increase in dialysate levels of L-DOPA and 3-OMD. However, it did not reduce striatal dopamine levels in the 6-OHDA-lesioned hemisphere, which were elevated following L-DOPA administration. The increases in DOPAC and HVA levels were abolished by NSD-1015 pretreatment. These results suggest that, while NSD-1015 blocks central AADC activity, it also acts as a monoamine oxidase inhibitor so maintaining striatal dopamine concentration by reducing dopamine metabolism. NSD-1015, therefore, may not be an appropriate tool for the study of brain AADC activity and for assessing the neuromodulatory role of L-DOPA.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.0953-816x.2000.01370.xDOI Listing

Publication Analysis

Top Keywords

aadc activity
16
levels l-dopa
12
central aadc
12
nsd-1015
10
aromatic amino
8
amino acid
8
acid dopa
8
dopa decarboxylase
8
inhibitor nsd-1015
8
l-dopa-induced circling
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!