A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

2'-deoxyguanosine oxidation is associated with decrease in the DNA-binding activity of the transcription factor Sp1 in liver and kidney from diabetic and insulin-resistant rats. | LitMetric

2'-deoxyguanosine oxidation is associated with decrease in the DNA-binding activity of the transcription factor Sp1 in liver and kidney from diabetic and insulin-resistant rats.

Free Radic Biol Med

Laboratoire du Stress Cardiovasculaire et Pathologies Associées, Faculté de Pharmacie de Grenoble, La Tronche, France.

Published: January 2001

Over the years, several lines of evidence have emerged supporting the role of oxidative stress in the development of diabetic complications. This could involve the increase in the production of reactive oxygen species and the decrease in antioxidative defense systems. Modulation of the level of intracellular reactive oxygen species is likely to affect the intracellular redox homeostasis, which is crucial for numerous biological events such as the transcriptional activation of genes. In this work we studied the binding of the redox transcription factors Sp1 and NF-kappaB extracted from kidney and liver of streptozotocin diabetic (STZ) and fructose-fed rats using electrophoretic mobility shift (EMSA) assay. In addition, the level in 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) was assessed within DNA by high performance liquid chromatography with electrochemical detection (HPLC-EC). A decrease in the affinity of Sp1 to DNA was observed in the kidney of STZ rats and fructose-fed rats (15% +/- 8.3 and 54% +/- 6.9, respectively, versus control group set to 100%). This was also found to occur to a lower extent, in the liver. Interestingly, higher levels of 8-oxodGuo, a biomarker of DNA oxidation, were measured in the kidney of diabetic rats. Therefore, the modification in the binding efficiency of Sp1 or NF-kappaB could be related to reactive oxygen species-mediated DNA damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0891-5849(00)00451-2DOI Listing

Publication Analysis

Top Keywords

reactive oxygen
12
kidney diabetic
8
oxygen species
8
sp1 nf-kappab
8
fructose-fed rats
8
rats
5
2'-deoxyguanosine oxidation
4
oxidation associated
4
associated decrease
4
decrease dna-binding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!