The role of PKN, a fatty acid- and Rho small GTPase-activated protein kinase, in cell-cycle regulation was analyzed. Microinjection of the active form of PKN into a Xenopus embryo caused cleavage arrest, whereas normal cell division proceeded in the control embryo microinjected with buffer or the inactive form of PKN. Exogenous addition of the active form of PKN delayed mitotic timing in Xenopus egg cycling extracts judging by morphology of sperm nuclei and Cdc2/cyclin B histone H1 kinase activity. The kinase-negative form of PKN did not affect the timing, suggesting that delayed mitotic timing depends on the kinase activity of PKN. The dephosphorylation of Tyr-15 of Cdc2 was also delayed in correlation with Cdc2/cyclin B histone H1 kinase activation in extracts containing active PKN. The Cdc25C activity for the dephosphorylation of Tyr-15 in Cdc2 was suppressed by pretreatment with the active form of PKN. Furthermore, PKN efficiently phosphorylated Cdc25C in vitro, indicating that PKN directly inhibits Cdc25C activity by phosphorylation. These results suggest that PKN plays a significant role in the control of mitotic timing by inhibition of Cdc25C.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC14555 | PMC |
http://dx.doi.org/10.1073/pnas.98.1.125 | DOI Listing |
Arterioscler Thromb Vasc Biol
July 2023
Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA.
Background: Peripheral vascular disease remains a leading cause of vascular morbidity and mortality worldwide despite advances in medical and surgical therapy. Besides traditional approaches, which can only restore blood flow to native arteries, an alternative approach is to enhance the growth of new vessels, thereby facilitating the physiological response to ischemia.
Methods: The Actin/R26 Rainbow reporter mouse was used for unbiased in vivo survey of injury-responsive vasculogenic clonal formation.
Biomol NMR Assign
October 2020
Department of Biochemistry, 80, Tennis Court Road, Cambridge, CB2 1GA, UK.
PRK1 is a member of the protein kinase C-related kinase (PRK) family of serine/threonine kinases and a downstream effector of Rho GTPases. PRK1 has three N-terminal Homology Region 1 (HR1) domains (HR1a, HR1b and HR1c), which form antiparallel coiled coils that interact with Rho family GTPases. PRK1 also has a C2-like domain that targets it to the plasma membrane and a kinase domain, which is a member of the protein kinase C superfamily.
View Article and Find Full Text PDFNanoscale Res Lett
March 2019
Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India.
Synthesis of high-quality graphene layers on insulating substrates is highly desirable for future graphene-based high-speed electronics. Besides the use of gaseous hydrocarbon sources, solid and liquid hydrocarbon sources have recently shown great promises for high-quality graphene growth. Here, I report chemical vapor deposition growth of mono- to few-layer graphene directly on SiO substrate using ethanol as liquid hydrocarbon feedstock.
View Article and Find Full Text PDFProstate
November 2017
Center for Cell Signaling, University of Virginia, Charlottesville, Virginia.
Background: Phosphoinositide-3 (PI-3) kinase signaling has a pervasive role in cancer. One of the key effectors of PI-3 kinase signaling is AKT, a kinase that promotes growth and survival in a variety of cancers. Genetically engineered mouse models of prostate cancer have shown that AKT signaling is sufficient to induce prostatic epithelial neoplasia (PIN), but insufficient for progression to adenocarcinoma.
View Article and Find Full Text PDFJ Phys Chem A
November 2015
Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Cartuja Campus, 18071 Granada, Spain.
Dyes with near-red emission are of great interest because of their undoubted advantages for use as probes in living cells. In-depth knowledge of their photophysics is essential for employment of such dyes. In this article, the photophysical behavior of a new silicon-substituted xanthene, 7-hydroxy-5,5-dimethyl-10-(o-tolyl)dibenzo[b,e]silin-3(5H)-one (2-Me TM), was explored by means absorption, steady-state, and time-resolved fluorescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!