Calpain 3 is known as the skeletal muscle-specific member of the calpains, a family of intracellular nonlysosomal cysteine proteases. It was previously shown that defects in the human calpain 3 gene are responsible for limb girdle muscular dystrophy type 2A (LGMD2A), an inherited disease affecting predominantly the proximal limb muscles. To better understand the function of calpain 3 and the pathophysiological mechanisms of LGMD2A and also to develop an adequate model for therapy research, we generated capn3-deficient mice by gene targeting. capn3-deficient mice are fully fertile and viable. Allele transmission in intercross progeny demonstrated a statistically significant departure from Mendel's law. capn3-deficient mice show a mild progressive muscular dystrophy that affects a specific group of muscles. The age of appearance of myopathic features varies with the genetic background, suggesting the involvement of modifier genes. Affected muscles manifest a similar apoptosis-associated perturbation of the IkappaBalpha/nuclear factor kappaB pathway as seen in LGMD2A patients. In addition, Evans blue staining of muscle fibers reveals that the pathological process due to calpain 3 deficiency is associated with membrane alterations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2150676PMC
http://dx.doi.org/10.1083/jcb.151.7.1583DOI Listing

Publication Analysis

Top Keywords

muscular dystrophy
12
capn3-deficient mice
12
ikappabalpha/nuclear factor
8
factor kappab
8
kappab pathway
8
loss calpain
4
calpain proteolytic
4
proteolytic activity
4
activity leads
4
leads muscular
4

Similar Publications

Unlabelled: Congenital titinopathy has recently emerged as one of the most common congenital muscle disorders.

Objective: To better understand the presentation and clinical needs of the under-characterized extreme end of the congenital titinopathy severity spectrum.

Methods: We comprehensively analyzed the clinical, imaging, pathology, autopsy, and genetic findings in 15 severely affected individuals from 11 families.

View Article and Find Full Text PDF

Prophylactic Use of Cardiac Medications and Survival in Duchenne Muscular Dystrophy.

Muscle Nerve

January 2025

Stead Family Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.

Introduction/aims: Prophylactic treatment of left ventricular dysfunction (LVD) in Duchenne muscular dystrophy (DMD) delays onset of LVD, but there is limited data showing impact on survival. Our aim was to describe survival among treated and untreated individuals with DMD.

Methods: Retrospective, population-based surveillance data from the Muscular Dystrophy Surveillance, Tracking and Research Network (MD STARnet) were used.

View Article and Find Full Text PDF

CRISPR-Cas9 in Cardiovascular Medicine: Unlocking New Potential for Treatment.

Cells

January 2025

Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland.

Cardiovascular diseases (CVDs) remain a significant global health challenge, with many current treatments addressing symptoms rather than the genetic roots of these conditions. The advent of CRISPR-Cas9 technology has revolutionized genome editing, offering a transformative approach to targeting disease-causing mutations directly. This article examines the potential of CRISPR-Cas9 in the treatment of various CVDs, including atherosclerosis, arrhythmias, cardiomyopathies, hypertension, and Duchenne muscular dystrophy (DMD).

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a severe genetic muscle disease occurring due to mutations of the dystrophin gene. There is no cure for DMD. Using a dystrophinutrophin (DKO-Hom) mouse model, we investigated the PGE2/EP2 pathway in the pathogenesis of dystrophic muscle and its potential as a therapeutic target.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!