Protein disulfide isomerase (PDI) is a modular polypeptide consisting of four domains, a, b, b', and a', plus an acidic C-terminal extension, c. PDI carries out multiple functions, acting as the beta subunit in the animal prolyl 4-hydroxylases and in the microsomal triglyceride transfer protein and independently acting as a protein folding catalyst. We report here that the minimum sequence requirement for the assembly of an active prolyl 4-hydroxylase alpha(2)beta(2) tetramer in insect cell coexpression experiments is fulfilled by the PDI domain construct b'a' but that the sequential addition of the b and a domains greatly increases the level of enzyme activity obtained. In the assembly of active prolyl 4-hydroxylase tetramers, the a and b domains of PDI, but not b' and a', can in part be substituted by the corresponding domains of ERp57, a PDI isoform that functions naturally in association with the lectins calnexin and calreticulin. The a' domain of PDI could not be substituted by the PDI a domain, suggesting that both b' and a' domains contain regions critical for prolyl 4-hydroxylase assembly. All PDI domain constructs and PDI/ERp57 hybrids that contain the b' domain can bind the 14-amino acid peptide Delta-somatostatin, as measured by cross-linking; however, binding of the misfolded protein "scrambled" RNase required the addition of domains ab or a' of PDI. The human prolyl 4-hydroxylase alpha subunit has at least two isoforms, alpha(I) and alpha(II), which form with the PDI polypeptide the (alpha(I))(2)beta(2) and (alpha(II))(2)beta(2) tetramers. We report here that all the PDI domain constructs and PDI/ERp57 hybrid polypeptides tested were more effectively associated with the alpha(II) subunit than the alpha(I) subunit.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M010656200DOI Listing

Publication Analysis

Top Keywords

prolyl 4-hydroxylase
20
pdi domain
16
pdi
11
domains
8
protein disulfide
8
disulfide isomerase
8
assembly active
8
active prolyl
8
addition domains
8
domains pdi
8

Similar Publications

Collagen stroma interactions within the extracellular microenvironment of breast tissue play a significant role in breast cancer, including risk, progression, and outcomes. Hydroxylation of proline (HYP) is a common post-translational modification directly linked to breast cancer survival and progression. Changes in HYP status lead to alterations in epithelial cell signaling, extracellular matrix remodeling, and immune cell recruitment.

View Article and Find Full Text PDF

Collagen, a major component of the extracellular matrix, is crucial for the structural integrity of the Caenorhabditis elegans cuticle. While several proteins involved in collagen biosynthesis have been identified, the complete regulatory network remains unclear. This study investigates the role of CALU-1, an ER-resident calcium-binding protein, in cuticle collagen formation and maintenance.

View Article and Find Full Text PDF

The hypoxia-inducible factor (HIF) pathway has been demonstrated to play a pivotal role in the process of high-altitude adaptation. PHD2, a key regulator of the HIF pathway, has been found to be associated with erythropoiesis. However, the relationship between changes in Phd2 abundance and erythroid differentiation under hypoxic conditions remains to be elucidated.

View Article and Find Full Text PDF

Objective: To explore the mechanism of hyperbaric oxygen therapy in inhibiting subchondral bone angiogenesis and delaying the progression of osteoarthritis through the PHD2/HIF-1α signaling pathway.

Methods: Mice were randomly divided into three groups (control group, osteoarthritis group, and hyperbaric oxygen treatment group). The effect of hyperbaric oxygen therapy on osteoarthritis was evaluated using Micro-CT, Safranin O-Fast Green staining, and detection of osteoarthritis inflammation markers (MMP-13, ADAMTS-5, Col2a1, and Aggrecan).

View Article and Find Full Text PDF

Hydroxycitric acid reconstructs damaged articular cartilages by modifying the metabolic cascade in chondrogenic cells.

Osteoarthr Cartil Open

March 2025

Department of Regeneration Sciences and Engineering, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan.

Objective: Osteoarthritis, a degenerative joint disease, requires innovative therapies due to the limited ability of cartilage to regenerate. Since mesenchymal stem cells (MSCs) provide a cell source for chondrogenic cells, we hypothesize that chemicals capable of enhancing the chondrogenic potential of MSCs with transforming growth factor-beta (TGFβ) in vitro may similarly promote chondrogenesis in articular cartilage in vivo.

Design: Chemical compounds that enhance the TGFβ signaling for chondrogenesis were investigated utilizing mesenchymal stem cells derived from human induced pluripotent stem cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!