A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structural properties and mechanisms that govern association of C kinase adapter 1 with protein kinase C3 and the cell periphery. | LitMetric

Structural properties and mechanisms that govern association of C kinase adapter 1 with protein kinase C3 and the cell periphery.

J Biol Chem

Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461, USA.

Published: March 2001

Association of an atypical protein kinase C (aPKC) with an adapter protein can affect the location, activity, substrate specificity, and physiological role of the phosphotransferase. Knowledge of mechanisms that govern formation and intracellular targeting of aPKC.adapter protein complexes is limited. Caenorhabditis elegans protein kinase C adapter proteins (CKA1 and CKA1S) bind and target aPKCs and provide prototypes for mechanistic analysis. CKA1 binds an aPKC (PKC3) via a phosphotyrosine binding (PTB) domain. A distinct, Arg/Lys-rich N-terminal region targets CKA1 to the cell periphery. We discovered that a short segment ((212)GGIDNGAFHEHEI(224)) of the V(2) (linker) region of PKC3 creates a binding surface that interacts with the PTB domain of CKA1/CKA1S. The docking domain of PKC3 differs from classical PTB ligands by the absence of Tyr and Pro. Substitution of Ile(214), Asn(216), or Phe(219) with Ala abrogates binding of PKC3 with CKA1; these residues cooperatively configure a docking site that complements an apolar surface of the CKA1 PTB domain. Phosphorylation site domains (PSD1, residues 11-25; PSD2, residues 61-77) in CKA1 route the adapter (and tethered PKC3) to the cell periphery. Phosphorylation of Ser(17) and Ser(65) in PSDs 1 and 2 elicits translocation of CKA1 from the cell surface to cytoplasm. Activities of DAG-stimulated PKCs and opposing protein Ser/Thr phosphatases can dynamically regulate the distribution of adapter protein between the cell periphery and cytoplasm.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M008991200DOI Listing

Publication Analysis

Top Keywords

cell periphery
16
adapter protein
12
protein kinase
12
ptb domain
12
mechanisms govern
8
kinase adapter
8
cka1 cell
8
protein
7
cka1
7
adapter
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!