We have shown that microvascular changes that promote fibrin deposition in human cardiac allografts adversely affect clinical outcome. However, some allografts exhibit phenotypic changes in capillaries following the deposition of fibrin, which subsequently provide a significant survival advantage. The mechanism(s) involved in these capillary changes is(are) unknown. Similarly, although we have shown a significant temporal relationship between microvascular fibrin deposition and vascular endothelial growth factor (VEGF) immunoreactivity in cardiac allografts, the cellular source and relative changes in VEGF gene expression under these conditions are not known. Using immunocytochemical techniques, biopsies devoid of fibrin deposition lacked detectable VEGF immunoreactivity, whereas biopsies with fibrin deposition showed VEGF immunoreactivity in cardiocytes, interstitium, and some microvessels. By in situ hybridization, biopsies without microvascular fibrin deposition showed faint VEGF hybridization signals confined primarily to cardiocytes. In biopsies with fibrin deposition, strong VEGF hybridization signals were detected in cardiocytes, arteriolar smooth muscle cells were occasionally labeled, and endothelial cells were rarely labeled. By quantitative RT-PCR, biopsies with fibrin deposition (n=5) relatively expressed approximately three-fold more VEGF mRNA than biopsies without fibrin deposition (n=5 P=0.02). Serum VEGF titers also were greater (P=0.01) in recipients with fibrin deposition (372.9+/-66.7 pg/ml n=18) compared to recipients without fibrin deposition (172.1+/-25.0 pg/ml n=16). Collectively, these results support the hypothesis that increased myocyte-derived VEGF production following microvascular fibrin deposition in transplanted human hearts may act in a paracrine manner to promote activational and phenotypic changes in capillaries that provide a survival advantage for the allografts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jmcc.2000.1292 | DOI Listing |
Comput Med Imaging Graph
January 2025
Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China. Electronic address:
Pathological analysis of placenta is currently a valuable tool for gaining insights into pregnancy outcomes. In placental histopathology, multiple functional tissues can be inspected as potential signals reflecting the transfer functionality between fetal and maternal circulations. However, the identification of multiple functional tissues is challenging due to (1) severe heterogeneity in texture, size and shape, (2) distribution across different scales and (3) the need for comprehensive assessment at the whole slide image (WSI) level.
View Article and Find Full Text PDFMediators Inflamm
January 2025
Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan.
Sci Rep
December 2024
Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology NAS RA, 7 Hasratyan Str., Yerevan, 0014, Armenia.
Antiphospholipid syndrome (APS) is associated with recurrent pregnancy morbidity, yet the underlying mechanisms remain elusive. We performed multifaceted characterization of the biological and transcriptomic signatures of mouse placenta and uterine natural killer (uNK) cells in APS. Histological analysis of APS placentas unveiled placental abnormalities, including disturbed angiogenesis, occasional necrotic areas, fibrin deposition, and nucleated red blood cell enrichment.
View Article and Find Full Text PDFPediatr Rheumatol Online J
December 2024
Section of Rheumatology, Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Canada.
Background: Primary small vessel CNS vasculitis (sv-cPACNS) is a challenging inflammatory brain disease in children. Brain biopsy is mandatory to confirm the diagnosis. This study aims to develop and validate a histological scoring tool for diagnosing small vessel CNS vasculitis.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
Hemolytic-uremic syndrome (HUS) is a systemic complication of an infection with Shiga toxin (Stx)-producing enterohemorrhagic , primarily leading to acute kidney injury (AKI) and microangiopathic hemolytic anemia. Although free heme has been found to aggravate renal damage in hemolytic diseases, the relevance of the heme-degrading enzyme heme oxygenase-1 (HO-1, encoded by ) in HUS has not yet been investigated. We hypothesized that HO-1 also important in acute phase responses in damage and inflammation, contributes to renal pathogenesis in HUS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!