Nuclear factor-kappaB (NF-kappa B) is a pleiotropic oxidant-sensitive transcription factor that is present in the cytosol in an inactive form complexed to an inhibitory kappaB (I kappa B) monomer. Various stimuli, including ischemia, hypoxia, free radicals, cytokines, and lipopolysaccharide (LPS), activate NF-kappa B by inducing phosphorylation of I kappa B. Phosphorylation of serine residues at positions 32 and 36 is critical for ubiquitination and degradation of I kappa B alpha with consequent migration of NF-kappa B to the nucleus. Although NF-kappa B is thought to contribute to numerous pathophysiologic processes, definitive assessment of its role has been hindered by the inability to achieve specific inhibition in vivo. Pharmacologic inhibitors of NF-kappa B are available, but their utility for in vivo studies is limited by their relative lack of specificity. Targeted ablation of genes encoding NF-kappa B subunits has not been productive in this regard because of fetal lethality in the case of p65 and functional redundancy in the Rel family of proteins. To overcome these limitations, we have created a viable transgenic mouse that expresses a phosphorylation-resistant mutant of I kappa B alpha (I kappa B alpha(S32A,S36A)) under the direction of a cardiac-specific promoter. Several transgenic lines were obtained with copy numbers ranging from one to seven. The mice exhibit normal cardiac morphology and histology. Total myocardial I kappa B alpha protein level is elevated 3.5- to 6.5-fold with a concomitant 50-60% decrease in the level of I kappa B beta. Importantly, expression of I kappa B(S32A,S36A) results in complete abrogation of myocardial NF-kappa B activation in response to tumor necrosis factor- alpha (TNF-alpha) and LPS stimulation. Thus, novel transgenic mice have been created that make it possible to achieve cardiac-specific and selective inhibition of NF-kappa B in vivo. These transgenic mice should be useful in studies of various cardiac pathophysiological phenomena that involve NF-kappa B activation, including ischemic preconditioning, heart failure, septic shock, acute coronary syndromes, cardiac allograft rejection, and apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmcc.2000.1291DOI Listing

Publication Analysis

Top Keywords

kappa alpha
16
kappa
10
nf-kappa
9
mutant kappa
8
nf-kappa activation
8
transgenic mice
8
alpha
5
cardiac-specific abrogation
4
abrogation nf-
4
nf- kappa
4

Similar Publications

Sepsis remains the leading cause of multiple-organ injury due to endotoxemia. Astaxanthin (ASTA), widely used in marine aquaculture, has an extraordinary potential for antioxidant and anti-inflammatory activity. Purinergic receptor (e.

View Article and Find Full Text PDF

Background/purpose: Nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain containing protein 5 (NLRC5) plays a regulatory role in innate and adaptive immunity. However, its role in periodontitis remains unclear. This study investigated the effects of NLRC5 on periodontitis and the underlying mechanism.

View Article and Find Full Text PDF

Chronic Stress Mediates Inflammatory Cytokines Alterations and Its Role in Tumorigenesis.

J Inflamm Res

January 2025

Department of Otorhinolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.

Introduction: Prolonged psychological stress is closely associated with cancer due to its role in promoting the release of stress hormones through the sustained activation of the sympathetic-adrenal-medullary system. These hormones interact with receptors on inflammatory cells, leading to the activation of key signaling pathways, including the transcription factors signal transducer and activator of transcription 3 (STAT-3) and kappa-light-chain-enhancer of activated B cells (NF-κB). These factors drive the production of pro-inflammatory substances, such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), which can influence the initiation and progression of cancer.

View Article and Find Full Text PDF

Background: Atherosclerosis serves as the fundamental pathology for a variety of cardiovascular disorders, with its pathogenesis being closely tied to the complex interplay among lipid metabolism, oxidative stress, and inflammation. Wogonoside is a natural flavonoid extracted from Scutellaria baicalensis with a variety of biological activities, including anti-inflammatory, hypolipidemic, and cardiac function improvement properties. Despite these known effects, the specific role of wogonoside in the context of atherosclerosis remains to be elucidated.

View Article and Find Full Text PDF

Pharmacological modulation of Sigma-1 receptor ameliorates pathological neuroinflammation in rats with diabetic neuropathic pain via the AKT/GSK-3β/NF-κB pathway.

Brain Res Bull

January 2025

Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China; Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, PR China. Electronic address:

Diabetic neuropathic pain (DNP) is a common complication of diabetes mellitus (DM) and is characterized by spontaneous pain and neuroinflammation. The Sigma-1 receptor (Sig-1R) has been proposed as a target for analgesic development. It is an important receptor with anti-inflammatory properties and has been found to regulate DNP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!