Cardiac hypertrophy is a significant risk factor for the development of congestive heart failure (CHF). Mitochondrial defects are reported in CHF, but no consistent mitochondrial alterations have yet been identified in hypertrophy. In this study selective metabolic inhibitors were used to determine thresholds for respiratory inhibition and to reveal novel mitochondrial defects in hypertrophy. Cardiac hypertrophy was produced in rats by aortic banding. Mitochondria were isolated from left ventricular tissue and the effects of inhibiting respiratory complexes I and IV on mitochondrial oxygen consumption were measured. At 8 weeks post-surgery, 65+/-2% complex IV inhibition was required to inhibit respiration half maximally in control mitochondria. In contrast, only 52+/-6% complex IV inhibition was required to inhibit respiration half maximally in mitochondria from hypertrophied hearts (P=0.046). This effect persisted at 22 weeks post-surgery and was accompanied by a significant upregulation of inducible nitric oxide synthase (iNOS, 3.0+/-0.7-fold, P=0.006). We conclude that respiration is more sensitive to complex IV inhibition in hypertrophy. Nitric oxide is a well documented inhibitor of complex IV, and thus the combination of increased NO(.)from iNOS and an increased sensitivity to inhibition of one of its targets could result in a bioenergetic defect in hypertrophy that may be a harbinger of CHF.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmcc.2000.1276DOI Listing

Publication Analysis

Top Keywords

nitric oxide
12
cardiac hypertrophy
12
complex inhibition
12
increased sensitivity
8
hypertrophy cardiac
8
mitochondrial defects
8
weeks post-surgery
8
inhibition required
8
required inhibit
8
inhibit respiration
8

Similar Publications

Background: Pelvic trauma can have long-lasting debilitating effects, including severe erectile dysfunction (ED) in men. While there are effective treatments for ED, these treat the symptoms not the cause. Those who suffer from an acute traumatic injury to the neurovascular supply of penis, may benefit from regenerative therapy.

View Article and Find Full Text PDF

The therapeutic effects of probiotics in patients with traumatic brain injury (TBI) remain unclear. This study aimed to investigate the effects of probiotic supplementation on cell adhesion molecules, oxidative stress, and antioxidant parameters in TBI patients. This randomized, double-blind, placebo-controlled trial included 46 TBI patients who were randomly assigned to receive either a probiotic supplement (n = 23) or a placebo (n = 23) for 14 days.

View Article and Find Full Text PDF

Colorectal cancer (CRC) represents a significant global health challenge, with approximately 1.8 million new cases diagnosed annually and a mortality toll exceeding 881,000 lives each year. This study aimed to evaluate the chemoprotective efficacy of Cyanidin-3-glucoside (C3G) in a rat model of CRC induced by 1,2-dimethylhydrazine (DMH).

View Article and Find Full Text PDF

Hyaluronic acid-mediated targeted nano-modulators for activation of pyroptosis for cancer therapy through multichannel regulation of Ca overload.

Int J Biol Macromol

January 2025

Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:

Calcium-based nanomaterials-mediated Ca overload-induced pyroptosis and its application in tumor therapy have received considerable attention. However, the calcium buffering capacity of tumor cells can maintain mitochondrial calcium homeostasis, so it is important to effectively disrupt this homeostasis to activate pyroptosis. Here, a nano-modulator CUR@CaCO-PArg@HA (CCAH) was developed to regulate calcium overload in multiple channels and activate pyroptosis.

View Article and Find Full Text PDF

Carboxymethyl polysaccharides from Poria cocos (Schw.) wolf: Structure, immunomodulatory, anti-inflammatory, tumor cell proliferation inhibition and antioxidant activity.

Int J Biol Macromol

January 2025

Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.. Electronic address:

This study comprehensively explores the relationship between the structure of carboxymethyl-pachymaran (CMP) and its diverse biological activities, including immunomodulation, anti-inflammatory effects, tumor cell proliferation inhibition, and antioxidant activity. By adjusting preparation parameters, highly purified CMP samples with varying degrees of substitution (DS) and molecular weights (Mw) were successfully obtained. The results indicate that CMP, composed primarily of β-D-glucan, exhibits different levels of activity depending on its structural characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!