A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Performance of the dynamic single photon emission computed tomography (dSPECT) method for decreasing or increasing activity changes. | LitMetric

AI Article Synopsis

  • Radionuclide imaging is increasingly utilized for functional assessments, with a new dynamic SPECT (dSPECT) method allowing for the reconstruction of 3D images over time using a single slow camera rotation.
  • This method shows over 90% accuracy in measuring washout half-lives with triple-head cameras, and while accuracy decreases with fewer heads, dual-head systems still perform well.
  • Preliminary studies with this technique provide detailed dynamic images of tracer movement in the kidneys, offering insights into renal function comparable to traditional dynamic planar scans.

Article Abstract

Radionuclide imaging is now widely used whenever functional information is required. We present a new approach to dynamic SPECT imaging (dSPECT method) that uses a single slow rotation of a conventional camera and allows us to reconstruct a series of 3D images corresponding to the radiotracer distribution in the body at various times. Using simulations of various camera configurations and acquisition protocols, we have shown that this method is able to reconstruct washout half-lives with an accuracy greater than 90% when used with triple-head SPECT cameras. Accuracy decreases when using fewer camera heads, but dual-head geometries still give an accuracy greater than 80% for short and 90% for long half-lives and about 50-75% for single-head systems. Dynamic phantom experiments have yielded similar results. Presence of attenuation and background activity does not affect the accuracy of the dSPECT reconstructions. In all situations investigated satisfactory dynamic images were produced. A preliminary normal volunteer study measuring renal function was performed. The reconstructed dynamic images may be presented as a three-dimensional movie showing movement of the tracer through the kidneys and the measurement of the regional renal function can be performed. The time-activity curves determined from this dSPECT data are very similar to those obtained from dynamic planar scans.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0031-9155/45/12/302DOI Listing

Publication Analysis

Top Keywords

dspect method
8
accuracy greater
8
dynamic images
8
renal function
8
function performed
8
dynamic
5
performance dynamic
4
dynamic single
4
single photon
4
photon emission
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!