Purpose: We explored the use of autologous muscle derived cells as a method of treating stress urinary incontinence. We determined whether urethral muscle derived cell injection is feasible and compared it with bovine collagen injection.
Materials And Methods: Muscle derived cells isolated from female Sprague-Dawley rats were first transduced with retrovirus carrying the transgene for beta-galactosidase. We injected approximately 1 to 1.5 x 106 cells into the bladder wall and proximal urethra of 6 autologous animals. Tissue was harvested after 3 and 30 days, sectioned, stained for fast myosin heavy chain and assayed for beta-galactosidase. To compare muscle derived cell and bovine collagen injections 100 microl. of commercially available bovine collagen were also injected in Sprague-Dawley female rats. Tissue was harvested in 3 animals each after 3 and 30 days, sectioned and stained for trichrome. Subsequently, 3 adult SCID mice were used to compare the level of transgene expression at each time point after injecting 1.5 x 106 cells per injection, which were transduced with adenovirus carrying the transgene for beta-galactosidase.
Results: A large number of cells expressing beta-galactosidase were observed in the bladder and urethral wall 3 and 30 days after autologous cell injection in Sprague-Dawley rats. The persistence of primary muscle derived cells at 3 days was similar to that of collagen. However, at 30 days there was significant cell persistence while only a minimal amount of injected bovine collagen was detectable. Approximately 88% of the beta-galactosidase expression at day 3 remained at day 30 in SCID mice.
Conclusions: We present 2 new findings important for the emerging field of urological tissue engineering, including the feasibility of injecting autologous skeletal muscle derived cells into the lower urinary tract and the greater persistence of such injected cells versus injected bovine collagen. Therefore, autologous muscle derived cell injection may be an attractive alternative treatment option for stress urinary incontinence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00005392-200101000-00077 | DOI Listing |
J Proteome Res
January 2025
Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E0J9, Canada.
Oxylipins, diverse lipid mediators derived from fatty acids, play key roles in respiratory physiology, but the contribution of lung structural cells to this diverse profile is not well understood. This study aimed to characterize the oxylipin profiles of airway smooth muscle (ASM), lung fibroblasts (HLF), and epithelial (HBE) cells and define how they shift when they are exposed to stimuli related to contractility, fibrosis, and inflammation. Using HPLC-MS/MS, 162 oxylipins were measured in baseline media from cultured human ASM, HLF, and HBE cells as well as after stimulation with modulators of contractility and central regulators of fibrosis/inflammation.
View Article and Find Full Text PDFBioinformatics
January 2025
Department of Robotics & Mechatronics Engineering, DGIST, Daegu, 42988, South Korea.
Motivation: Skeletal muscle cells (skMCs) combine together to create long, multi-nucleated structures called myotubes. By studying the size, length, and number of nuclei in these myotubes, we can gain a deeper understanding of skeletal muscle development. However, human experimenters may often derive unreliable results owing to the unusual shape of the myotube, which causes significant measurement variability.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Eli Lilly and Company, Indianapolis, IN, USA.
Background: Anti-amyloid-β (Aβ) immunotherapy trials have shown amyloid-related imaging abnormalities (ARIA) as the most common and serious adverse events linked to pathological changes in cerebral vasculature. Nevertheless, the mechanisms underlying how amyloid immunotherapy triggers vascular damage, increases vascular permeability, and results in microhemorrhages remains unclear. Notably, activation of perivascular macrophages and infiltration of peripheral immune cells have been implicated in regulating cerebrovascular damage.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
Background: FDA-approved carbonic anhydrase inhibitors (CAIs) have been shown to attenuate Aβ pathology, neurodegeneration, and cerebrovascular dysfunction in models of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA), suggesting a key role for CAs as a novel and previously unexplored target for AD therapy. Amyloid β accumulation severely impairs the cerebral neuro-signaling pathway with a progressive loss in neurotrophic factors (NTFs, i.e.
View Article and Find Full Text PDFMol Pharm
January 2025
NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
Melanoma, with its steadily rising global incidence, is characterized by high invasiveness, leading to poor prognosis in advanced stages. There remains an unmet clinical need for the development of radiolabeled PET imaging probes for the early diagnosis of melanoma. Integrin VLA-4, a key factor in melanoma metastasis, presents a promising protein target to address the specificity shortcomings of existing probes in melanoma imaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!