The role of hydrogen peroxide in the contractile response to angiotensin II.

Mol Pharmacol

Department of Physiology, Alcalá University, and Instituto Reina Sofía de Investigaciones Nefrológicas, Madrid, Spain.

Published: January 2001

In the last years, reactive oxygen species (ROS) have been proposed as mediators of proliferative/hypertrophic responses to angiotensin II (Ang II), both in vivo and in vitro. However, the hypothesis that the Ang II-dependent cell contraction could be mediated by ROS, particularly H2O2, has not been tested. Present experiments were devoted to test this hypothesis and to analyze the possible mechanisms involved. Catalase (CAT) prevented the increased myosin light chain phosphorylation and the decreased planar cell surface area (PCSA) induced by 1 microM Ang II in cultured rat vascular smooth muscle cells (VSMC). This preventive effect of CAT was also detected when 1 microM platelet-activating factor (PAF) was used as a contractile agonist instead of Ang II. Similar results were found when using horseradish peroxidase as an H2O2 scavenger or cultured rat mesangial cells. In vascular smooth muscle cells, CAT modified neither the binding of labeled Ang II nor the Ang II-induced inositol 1,4,5-trisphosphate (IP3) synthesis. However, it completely abolished the Ang II-dependent calcium peak, in a dose-dependent fashion. CAT-loaded cells (increased intracellular CAT concentration over 3-fold) did not show either a decreased PCSA or an increased intracellular calcium concentration after Ang II treatment. Ang II stimulated the H2O2 synthesis by cultured cells, and the presence of CAT in the extracellular compartment significantly diminished the Ang II-dependent increased intracellular H2O2 concentration. The physiological importance of these findings was tested in rat thoracic aortic rings: CAT prevented the contraction elicited by Ang II. In summary, present experiments point to H2O2 as a critical intracellular metabolite in the regulation of cell contraction.

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.59.1.104DOI Listing

Publication Analysis

Top Keywords

ang ii-dependent
12
increased intracellular
12
ang
11
cell contraction
8
cat prevented
8
cultured rat
8
vascular smooth
8
smooth muscle
8
muscle cells
8
cat
6

Similar Publications

The Role of Renal Medullary Bilirubin and Biliverdin Reductase in Angiotensin II-Dependent Hypertension.

Am J Hypertens

December 2024

Department of Physiology & Biophysics, Cardiovascular-Renal Research Center, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216 USA.

Background: Increased circulating bilirubin attenuates angiotensin (Ang) II-induced hypertension and improves renal hemodynamics. However, the intrarenal mechanisms that mediate these effects are not known. The goal of the present study was to test the hypothesis that bilirubin generation in the renal medulla plays a protective role against Ang II-induced hypertension.

View Article and Find Full Text PDF

Fructose high-salt (FHS) diets increase blood pressure (BP) in an angiotensin II (Ang II)-dependent manner. Ang II stimulates aldosterone release, which, by acting on the mineralocorticoid receptor (MR), regulates Na reabsorption by the aldosterone-sensitive distal nephron (ASDN). The MR can be transactivated by glucocorticoids, including those locally produced by 11β-HSD1.

View Article and Find Full Text PDF

Medical procedures, such as radiation therapy, are a vital element in treating many cancers, significantly contributing to improved survival rates. However, a common long-term complication of such exposure is radiation-induced skin fibrosis (RISF), a complex condition that poses substantial physical and psychological challenges. Notably, about 50% of patients undergoing radiation therapy may achieve long-term remission, resulting in a significant number of survivors managing the aftereffects of their treatment.

View Article and Find Full Text PDF

Flavin monooxygenases (FMOs) are enzymes responsible for the oxidation of a broad spectrum of exogenous and endogenous amines. There is increasing evidence that trimethylamine (TMA), a compound produced by gut bacteria and also recognized as an industrial pollutant, contributes to cardiovascular diseases. FMOs convert TMA into trimethylamine oxide (TMAO), which is an emerging marker of cardiovascular risk.

View Article and Find Full Text PDF

Background: GPCRs (G-protein-coupled receptors) play a central role in the regulation of smooth muscle cell (SMC) contractility, but the function of SMC-expressed orphan GPCR class C group 5 member C (GPRC5C) is unclear. The aim of this project is to define the role of GPRC5C in SMC in vitro and in vivo.

Methods: We studied the role of GPRC5C in the regulation of SMC contractility and differentiation in human and murine SMC in vitro, as well as in tamoxifen-inducible, SMC-specific GPRC5C knockout mice under basal conditions and in vascular disease in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!