Ligand-induced dynamic membrane changes and cell deletion conferred by vanilloid receptor 1.

J Biol Chem

Neuronal Gene Expression Unit, Pain and Neurosensory Mechanisms Branch, NIDCR, the Laboratory of Cellular Carcinogenesis and Tumor Promotion, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA.

Published: April 2001

The real time dynamics of vanilloid-induced cytotoxicity and the specific deletion of nociceptive neurons expressing the wild-type vanilloid receptor (VR1) were investigated. VR1 was C-terminally tagged with either the 27-kDa enhanced green fluorescent protein (eGFP) or a 12-amino acid epsilon-epitope. Upon exposure to resiniferatoxin, VR1eGFP- or VR1epsilon-expressing cells exhibited pharmacological responses similar to those of cells expressing the untagged VR1. Within seconds of vanilloid exposure, the intracellular free calcium ([Ca(2+)](i)) was elevated in cells expressing VR1. A functional pool of VR1 also was localized to the endoplasmic reticulum that, in the absence of extracellular calcium, also was capable of releasing calcium upon agonist treatment. Confocal imaging disclosed that resiniferatoxin treatment induced vesiculation of the mitochondria and the endoplasmic reticulum ( approximately 1 min), nuclear membrane disruption (5-10 min), and cell lysis (1-2 h). Nociceptive primary sensory neurons endogenously express VR1, and resiniferatoxin treatment induced a sudden increase in [Ca(2+)](i) and mitochondrial disruption which was cell-selective, as glia and non-VR1-expressing neurons were unaffected. Early hallmarks of cytotoxicity were followed by specific deletion of VR1-expressing cells. These data demonstrate that vanilloids disrupt vital organelles within the cell body and, if administered to sensory ganglia, may be employed to rapidly and selectively delete nociceptive neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M008392200DOI Listing

Publication Analysis

Top Keywords

vanilloid receptor
8
cytotoxicity specific
8
specific deletion
8
nociceptive neurons
8
cells expressing
8
endoplasmic reticulum
8
resiniferatoxin treatment
8
treatment induced
8
vr1
6
ligand-induced dynamic
4

Similar Publications

From pain to meningitis: bacteria hijack nociceptors to promote meningitis.

Front Immunol

January 2025

National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China.

Bacterial meningitis is a severe and life-threatening infection of the central nervous system (CNS), primarily caused by and . This condition carries a high risk of mortality and severe neurological sequelae, such as cognitive impairment and epilepsy. Pain, a central feature of meningitis, results from the activation of nociceptor sensory neurons by inflammatory mediators or bacterial toxins.

View Article and Find Full Text PDF

Inwardly rectifying potassium (Kir) channels regulate essential physiological processes in insects and have been identified as potential targets for developing new insecticides. Flonicamid has been reported to inhibit Kir channels, disrupting the functions of salivary glands and renal tubules. However, the precise molecular target of flonicamid remains debated.

View Article and Find Full Text PDF

2-arachnadoyl glycerol (2-AG) is one of the most common endocannabinoid molecules with anti-proliferative, cytotoxic, and pro-proliferative effects on different types of tumors. Typically, it induces cell death via cannabinoid receptor 1/2 (CB1/CB2)-linked ceramide production. In breast cancer, ceramide is counterbalanced by the sphingosine-1-phosphate, and thus the mechanisms of 2-AG influence on proliferation are poorly understood.

View Article and Find Full Text PDF

The Role of TRPV1/CGRP Pathway Activated by in Pathogenesis of Oral Lichen Planus.

Int J Mol Sci

January 2025

Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Oral Mucosal Diseases, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China.

The distinctive clinicopathologic characteristics of OLP indicated that both microbial dysbiosis and neurogenic inflammation may be jointly involved in its progression, and transient receptor potential vanilloid receptor-1 (TRPV1) may be a crucial element. The purpose of this study was to explore how TRPV1 mediated -induced inflammation. Meanwhile, we aimed to unravel how IL-36γ dysregulated the barrier function in oral keratinocytes.

View Article and Find Full Text PDF

Background: Chronic postoperative pain (CPOP) is among the main consequences of surgical procedures, directly affecting the quality of life. Although many strategies have been used to treat this symptom, they are often ineffective. Thus, studies investigating CPOP-associated mechanisms may help to develop more effective treatment strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!