Cholinesterases (ChE), use a Glu-His-Ser catalytic triad to enhance the nucleophilicity of the catalytic serine. It has been shown that serine proteases, which employ an Asp-His-Ser catalytic triad for optimal catalytic efficiency, decrease the hydrogen bonding distance between the Asp-His pair to form a short, strong hydrogen bond (SSHB) upon binding mechanism-based inhibitors, which form tetrahedral Ser-adducts, analogous to the tetrahedral intermediates in catalysis, or at low pH when the histidine is protonated [Cassidy, C. S., Lin, J., Frey, P. A. (1997) Biochemistry 36, 4576-4584]. Two types of mechanism-based inhibitors were bound to pure equine butyrylcholinesterase (BChE), a 364 kDa homotetramer, and the complexes were studied by (1)H NMR at 600 MHz and 25-37 degrees C. The downfield region of the (1)H NMR spectrum of free BChE at pH 7.5 showed a broad, weak, deshielded resonance with a chemical shift, delta = 16.1 ppm, ascribed to a small amount of the histidine-protonated form. Upon addition of a 3-fold excess of diethyl 4-nitrophenyl phosphate (paraoxon) and subsequent dealkylation, the broad 16.1 ppm resonance increased in intensity 4.7-fold, and yielded a D/H fractionation factor phi = 0.72+/-0.10 consistent with a SSHB between Glu and His of the catalytic triad. From an empirical correlation of delta with hydrogen-bond length in small crystalline compounds, the length of this SSBH is 2.64+/-0.04 A, in agreement with the length of 2.62+/-0.02 A independently obtained from phi. The addition of a 3-fold excess of m-(N,N, N-trimethylammonio)trifluoroacetophenone to BChE yielded no signal at 16.1 ppm, and a 640 Hz broad, highly deshielded proton resonance with a chemical shift delta = 18.1 ppm and a D/H fractionation factor phi = 0.63+/-0.10, also consistent with a SSHB. The length of this SSHB is calculated to be 2.62+/-0.04 A from delta and 2.59+/-0.03 A from phi. These NMR-derived distances agree with those found in the X-ray structures of the homologous acetylcholinesterase complexed with the same mechanism-based inhibitors, 2.60+/-0.22 and 2.66+/-0.28 A. However, the order of magnitude greater precision of the NMR-derived distances establish the presence of SSHBs. We suggest that ChEs achieve their remarkable catalytic power in ester hydrolysis, in part, due to the formation of a SSHB between Glu and His of the catalytic triad.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi0022644DOI Listing

Publication Analysis

Top Keywords

catalytic triad
16
mechanism-based inhibitors
12
161 ppm
12
short strong
8
strong hydrogen
8
hydrogen bond
8
resonance chemical
8
chemical shift
8
shift delta
8
addition 3-fold
8

Similar Publications

Polyethylene terephthalate (PET) waste significantly contributes to the global plastic crisis, but enzymatic conversion has become an efficient and environmentally friendly strategy to combat it. Therefore, this study explored the Re-face selective depolymerization mechanisms of a novel PET-degradation peptidase, hydrolase 202. Theoretical calculations revealed that the first step, a catalytic triad-assisted nucleophilic attack, is the rate-determining step.

View Article and Find Full Text PDF

The emergence of antibiotic-resistant bacteria has attracted interest in the field of endolysins. Here, we analyzed the diversity of endolysins and identified a new endolysin, Ply2741, that exhibited broad-spectrum bactericidal activity. Our results demonstrated that Ply2741 could effectively eradicate multidrug-resistant gram-positive pathogens and .

View Article and Find Full Text PDF

Zearalenone (ZEN) is a harmful macrolide mycotoxin, posing a serious hazard to human health. In this study, a highly efficient ZEN-degrading bacterium Gordonia hydrophobica HAU421 was isolated from soil by using spiramycin (SPM)-containing selective medium. Mass spectrometry analysis revealed that strain HAU421 could transform ZEN into hydrolyzed zearalenone (HZEN), zearalenol (ZEL), and hydrolyzed zearalenol (HZEL).

View Article and Find Full Text PDF

Insights into the catalytic mechanism of archaeal peptidoglycan endoisopeptidases from methanogenic phages.

Int J Biol Macromol

January 2025

Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. Electronic address:

Archaeal peptidoglycan, a crucial component of the cell walls of Methanobacteria and Methanopyri, enhances the tightness of methanogenic cells and their resistance to known lytic enzymes and antibiotics. Although archaeal peptidoglycan endoisopeptidases (Pei) can reportedly degrade archaeal peptidoglycan, their biochemistry is still largely unknown. In this study, we investigated the activity and catalytic properties of the endoisopeptidases PeiW and PeiP using synthesized isopeptides identical to natural substrates.

View Article and Find Full Text PDF

Unveiling the enzymatic pathway of UMG-SP2 urethanase: insights into polyurethane degradation at the atomic level.

Chem Sci

December 2024

LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre s/n 4169-007 Porto Portugal

The recently discovered metagenomic urethanases UMG-SP1, UMG-SP2, and UMG-SP3 have emerged as promising tools to establish a bio-based recycling approach for polyurethane (PU) waste. These enzymes are capable of hydrolyzing urethane bonds in low molecular weight dicarbamates as well as in thermoplastic PU and the amide bond in polyamide employing a Ser-Ser -Lys triad for catalysis, similar to members of the amidase signature protein superfamily. Understanding the catalytic mechanism of these urethanases is crucial for enhancing their enzymatic activity and improving PU bio-recycling processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!