The rod outer segment ATP binding cassette (ABC) transporter protein (ABCR) plays an important role in retinal rod cells presumably transporting retinal. Genetic studies in humans have linked mutations in the ABCR gene to a number of inherited retinal diseases particularly Stargardt macular degeneration and age-related macular degeneration (ARMD). The ABCR protein is characterized by two nucleotide binding domains and two transmembrane domains, each consisting of six membrane-spanning helices. We have cloned and expressed the 376 amino acid (aa) C-terminal end of this protein (amino acid residues 1898-2273) containing the second nucleotide binding domain (NBD2) with a purification tag at its amino terminus. The expressed protein was found to be soluble and was purified using a rapid and high-yield single-step procedure. The purified protein was monomeric and migrated as a 43 kDa protein in SDS-PAGE. The purified NBD2 protein had strong ATPase activity with a K(m) of 631 microM and V(max) of 144 nmol min(-1) mg(-1). This ATPase activity on normalization was kinetically comparable to that observed for purified and reconstituted native ABCR. Nucleotide inhibition studies suggest that the binding of NBD2 is specific for ATP/dATP, and that none of the other ribonucleotides appeared to compete for binding at this site. These studies demonstrate that cloned and expressed NBD2 protein is a fully functional ATPase in the absence of the remainder of the molecule. The level of ATPase activity was comparable to that of trans-retinal-stimulated ABCR ATPase. The NBD2 expression plasmid was used to generate a Leu2027Phe mutation associated with Stargardt disease. Analysis of the ATPase activity of the mutant protein demonstrated that it had a 14-fold increase in binding affinity (K(m) = 46 microM) with a corresponding 9-fold decrease in the rate of hydrolysis (V(max) = 16.6 nmol min(-1) mg(-1)), indicating a significant alteration of the ATPase function. It also provided a molecular basis of Stargardt disease involving this mutation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi0015966 | DOI Listing |
Toxicol Appl Pharmacol
January 2025
Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea. Electronic address:
This study explored the vasodilatory mechanisms of the sodium-glucose cotransporter-2 inhibitor remogliflozin using femoral arteries of rabbits. Remogliflozin dilated femoral arterial rings pre-contracted with phenylephrine in a concentration-dependent manner. Pretreatment with the Ca-sensitive K channel inhibitor (paxilline), the ATP-sensitive K channel inhibitor (glibenclamide), or the inwardly rectifying K channel inhibitor (Ba) did not alter the vasodilatory effect.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
January 2025
Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan. Electronic address:
The F domain of FF-ATP synthases/ATPases (FF) possesses three catalytic sites on the three αβ interfaces, termed αβ, αβ, and αβ, located mainly on the β subunits. The enzyme also has three non-catalytic ATP-binding sites on the three αβ interfaces, located mainly on the α subunits. When ATP does not bind to the non-catalytic site, FF becomes significantly prone to ADP inhibition, ultimately resulting in the loss of ATPase activity.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Dept. of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198.
The primary cilium is a crucial signaling organelle that can be generated by most human cells, and impediments to primary ciliogenesis lead to a variety of developmental disorders known as ciliopathies. The removal of the capping protein, CP110, from the mother centriole is a crucial early step that promotes generation of the ciliary vesicle and ciliogenesis. Recent studies have demonstrated that CP110 undergoes polyubiquitination and degradation in the proteosome, but the mechanisms of unfolding and removal from the mother centriole remain unknown.
View Article and Find Full Text PDFBlood
December 2024
Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with a poor prognosis and limited options for targeted therapies. Identifying new molecular targets to develop novel therapeutic strategies is the pressing immediate issue in T-ALL. Here, we observed high expression of WD Repeat-Containing Protein 5 (WDR5) in T-ALL; with in vitro and in vivo models we demonstrated the oncogenic role of WDR5 in T-ALL by activating cell cycle signaling through its new downstream effector, ATPase family AAA domain-containing 2 (ATAD2).
View Article and Find Full Text PDFBackground: A purine nucleoside called cladribine has been shown to increase toxic amyloid protein and cause impaired cognition. Auranofin is a gold(I)-containing drug with anti-inflammatory, antioxidant, anti-apoptotic, anti-amyloidogenic, and neuroprotective properties. The goal of the current study was to find out the neuroprotective effects of auranofin against cladribine-induced Aβ accumulation associated with AD-like symptoms in experimental rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!