Recent research into the biologic basis of drug addiction continues to offer considerable promise for understanding how neurochemistry, pharmacology, and molecular biology relate to the reinforcing effects of abused drugs. One area of research is the development and pharmacologic and neurochemical characterization of cocaine and opiate polydrug abuse, a growing subset of the drug abuse population. Considerable advances have also been made in understanding how chronic and persistent drug use induces biochemical and molecular biologic adaptations in brain regions related to drug reinforcement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11920-999-0026-9 | DOI Listing |
Anal Chem
January 2025
Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333ZA, Netherlands.
Thanks to the plummeting costs of continuously evolving omics analytical platforms, research centers collect multiomics data more routinely. They are, however, confronted with the lack of a versatile software solution to harmoniously analyze single-omics and interpret multiomics data. We have developed iSODA, a web-based application for the analysis of single- and multiomics data.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Department of Chemistry, Siddhachalam Laboratory, Raipur, 493221, Chhattisgarh, India.
Objectives: The primary objective of this review is to provide updated mechanisms that regulate ferroptosis sensitivity in cancer cells and recent advancements in drug targeting for ferroptosis as an antitumor therapy.
Methods: To achieve these objectives, a comprehensive literature review was conducted, analyzing recent studies on ferroptosis, including its cellular, molecular, and gene-level characteristics. The review involved an evaluation of advancements in ferroptosis drug research across various medical domains, with particular attention to novel therapeutic approaches in nano-medicine, TCM, and Western medicine.
JACS Au
January 2025
Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, Virginia 22908, United States.
Cell entry by enveloped viruses involves a set of multistep, multivalent interactions between viral and host proteins as well as manipulation of nanoscale membrane mechanics by these interacting partners. A mechanistic understanding of these events has been challenging due to the complex nature of the interactions and the event-to-event heterogeneity involved. Single-virus microscopy has emerged as a powerful technique to probe viral binding and fusion kinetics.
View Article and Find Full Text PDFJACS Au
January 2025
Interdisciplinary Research Center of Biology and Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
Construction and optimization of stable atomically dispersed metal sites on SiO surfaces are important yet challenging topics. In this work, we developed the amino group-assisted atomic layer deposition strategy to deposit the atomically dispersed Pt on SiO support for the first time, in which the particle size and ratio of Pt entities from single atom (Pt) to atomic cluster (Pt ) and nanoparticle (Pt ) on the SiO surface were well modulated. We demonstrated the importance of dual-site synergy for optimizing the activity of single-atom catalysts.
View Article and Find Full Text PDFJACS Au
January 2025
Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
Polyketide synthases (PKSs) are multidomain enzymatic assembly lines that biosynthesize a wide selection of bioactive natural products from simple building blocks. In contrast to their -acyltransferase (AT) counterparts, -AT PKSs rely on stand-alone ATs to load extender units onto acyl carrier protein (ACP) domains embedded in the core PKS machinery. -AT PKS gene clusters also encode stand-alone acyl hydrolases (AHs), which are predicted to share the overall fold of ATs but function like type II thioesterases (TEs), hydrolyzing aberrant acyl chains from ACP domains to promote biosynthetic efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!