To investigate whether haematopoietic stem cells in patients with sickle cell (SS) disease might be altered, we examined the number and cycling status of 5-week long-term culture-initiating cells (LTC-ICs) and in vitro multilineage colony-forming cells (CFCs) present in the blood of a large and clinically diverse group of SS patients. The concentrations of both of these cell types per ml of blood varied over a wide range in individual patients, but, on average, were significantly elevated above normal values ( approximately sevenfold and 15-fold respectively) and to an even greater extent than the lineage-restricted CFCs in the same samples. Wide variations in the concentration of circulating progenitors, particularly the LTC-ICs, were also seen over time (in concert with changes in the white blood cell count) in SS patients. [3H]-Thymidine suicide assays showed most of the CFCs and LTC-ICs in SS blood to be quiescent like their counterparts in normal blood. However, by comparison with historical data, the SS progenitors could be recruited into the cycle more quickly (i.e. within 2 vs. 3 d), thus showing the same kinetics of activation exhibited by 'mobilized' progenitors from patients given chemotherapy and exogenous growth factors. Taken together, these findings implicate previously documented increases in endogenous Steel factor, interleukin 3 and granulocyte-macrophage colony-stimulating factor levels in SS patients in the establishment of a chronically mobilized progenitor phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-2141.2000.02342.xDOI Listing

Publication Analysis

Top Keywords

patients sickle
8
sickle cell
8
cell disease
8
patients
7
blood
6
primitive haematopoietic
4
progenitors
4
haematopoietic progenitors
4
progenitors blood
4
blood patients
4

Similar Publications

Background: The coexistence of sickle cell anemia and multiple sclerosis in a single patient presents a rare and challenging clinical scenario, possibly favoured by the interplay between chronic inflammatory states and autoimmune processes.

Methos/results: We present the case of a 36-year-old woman with sickle cell anemia who developed progressive neurological symptoms leading to frequent falls and paraparesis; magnetic resonance imaging showed many periventricular, infratentorial, and both cervical and dorsal spinal cord lesions, leading to a diagnosis of multiple sclerosis. After a multidisciplinary approach the patient was successfully started on ofatumumab.

View Article and Find Full Text PDF

A 31-year-old male patient with a history of sickle cell disease (SCD) with stage V chronic kidney disease (CKD) presented for a deceased donor kidney transplant. During surgery, the transplanted kidney showed mottling and limited cortical flow, raising concerns for an intraoperative sickle cell crisis versus hyperacute rejection. Postoperative imaging revealed decreased vascularity, and the patient was treated with RBC exchange.

View Article and Find Full Text PDF

 Sickle cell anemia (SCA) is a genetic disorder with clinical manifestations due to circulatory changes, leading to adverse effects on the auditory system that might impact auditory processing, such as auditory discrimination and speech perception ability. This condition is associated with the severity level of anemia.  The purpose of the present study was to investigate the influence of anemia severity on auditory discrimination ability and speech perception in noise among SCA patients with normal hearing sensitivity.

View Article and Find Full Text PDF

Background: Sickle cell disease (SCD) confers neurological risks that contribute to cognitive and academic difficulties. Clinical guidelines state that cognition should be monitored using signaling questions. However, evidence is lacking regarding the extent to which signaling questions accurately identify children with cognitive issues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!