Prostaglandin endoperoxide H synthases (PGHSs) catalyze the committed step in the biosynthesis of prostaglandins and thromboxane, the conversion of arachidonic acid, two molecules of O(2), and two electrons to prostaglandin endoperoxide H(2) (PGH(2)). Formation of PGH(2) involves an initial oxygenation of arachidonate to yield PGG(2) catalyzed by the cyclooxygenase activity of the enzyme and then a reduction of the 15-hydroperoxyl group of PGG(2) to form PGH(2) catalyzed by the peroxidase activity. The cyclooxygenase active site is a hydrophobic channel that protrudes from the membrane binding domain into the core of the globular domain of PGHS. In the crystal structure of Co(3+)-heme ovine PGHS-1 complexed with arachidonic acid, 19 cyclooxygenase active site residues are predicted to make a total of 50 contacts with the substrate (Malkowski, M. G, Ginell, S., Smith, W. L., and Garavito, R. M. (2000) Science 289, 1933-1937); two of these are hydrophilic, and 48 involve hydrophobic interactions. We performed mutational analyses to determine the roles of 14 of these residues and 4 other closely neighboring residues in arachidonate binding and oxygenation. Mutants were analyzed for peroxidase and cyclooxygenase activity, and the products formed by various mutants were characterized. Overall, the results indicate that cyclooxygenase active site residues of PGHS-1 fall into five functional categories as follows: (a) residues directly involved in hydrogen abstraction from C-13 of arachidonate (Tyr-385); (b) residues essential for positioning C-13 of arachidonate for hydrogen abstraction (Gly-533 and Tyr-348); (c) residues critical for high affinity arachidonate binding (Arg-120); (d) residues critical for positioning arachidonate in a conformation so that when hydrogen abstraction does occur the molecule is optimally arranged to yield PGG(2) versus monohydroperoxy acid products (Val-349, Trp-387, and Leu-534); and (e) all other active site residues, which individually make less but measurable contributions to optimal catalytic efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M009377200 | DOI Listing |
ACS Infect Dis
January 2025
Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454, United States.
Inosine 5'-monophosphate dehydrogenase (IMPDH) is a promising antibiotic target. This enzyme catalyzes the NAD-dependent oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP), which is the rate-limiting step in guanine nucleotide biosynthesis. Bacterial IMPDH-specific inhibitors have been developed that bind to the NAD site.
View Article and Find Full Text PDFPLoS One
January 2025
Centre for Community-Based Research, Human Science Research Council, Pretoria, South Africa.
Purpose: Adolescent girls are at high risk for depression and human immunodeficiency virus (HIV) acquisition. Poor mental health can increase vulnerability to risky sexual behaviours. Therefore, this study aims to determine the prevalence of depressive symptomology and explore the convergence of HIV risk factors with depressive symptoms amongst cis-gender adolescent girls and young women (AGYW) in rural KwaZulu-Natal (KZN) and peri-urban Western Cape (WC) communities in South Africa.
View Article and Find Full Text PDFTranscription
January 2025
Department of Chemistry, University of Toronto, Mississauga, ON, Canada.
Protein engineering has emerged as a powerful approach toward the development of novel therapeutics targeting the MYC/MAX/E-box network, an active driver of >70% of cancers. The MYC/MAX heterodimer regulates numerous genes in our cells by binding the Enhancer box (E-box) DNA site and activating the transcription of downstream genes. Traditional small molecules that inhibit MYC face significant limitations that include toxic effects, drug delivery challenges, and resistance.
View Article and Find Full Text PDFCancer Biol Ther
December 2025
National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Department of Hematology, Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
Dysfunction or dysregulation of deubiquitination is closely related to the initiation and development of multiple cancers. Targeted regulation of deubiquitination has been recognized as an important strategy in tumor therapy. However, the mechanism by which drugs regulate deubiquitinase is not clear.
View Article and Find Full Text PDFJ Pestic Sci
November 2024
Syngenta, Bioscience, Jealott's Hill Research Centre.
Flometoquin (FLO) is a novel quinoline-type insecticide that elicits a quick knock-down effect against target pests; however, its mode of action (MoA) remains unknown. In this study, we investigated its MoA systematically, using varying biochemical techniques. Since FLO-treated insects exhibited symptoms similar to those induced by respiratory inhibitors, we examined the effect of FLO on respiratory enzyme complexes using mitochondria isolated from different insects (housefly, diamondback moth, and western flower thrips).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!