Costs of locomotion and vertic dynamics of cephalopods and fish.

Physiol Biochem Zool

Biology Department, Dalhousie University, Halifax, Nova Scotia B3H 4J1, Canada.

Published: June 2001

The world's oceans are three-dimensional habitats that support high diversity and biomass. Because the densities of most of the constituents of life are greater than that of seawater, planktonic and pelagic organisms had to evolve a host of mechanisms to occupy the third dimension. Some microscopic organisms survive at the surface by dividing rapidly in vertically well mixed zones, but most organisms, small and large, have antisinking strategies and structures that maintain vertical position and mobility. All of these mechanisms have energetic costs, ranging from the "foregone metabolic benefits" and increased drag of storing high-energy, low-density lipids to direct energy consumption for dynamic lift. Defining the niches in the mesopelagic zone, understanding evolution, and applying such ecological concepts as optimal foraging require good estimates of these costs. The extreme cases above are reasonably well quantified in fishes, but the energetic costs of dynamic physiological mechanisms like swim bladders are not; nor are the costs of maintaining vertical position for the chief invertebrate competitors, the cephalopods. This article evaluates a matrix of buoyancy mechanisms in different circumstances, including vacuum systems and ammonium storage, based on new data on the metabolic cost of creating buoyancy in Sepia officinalis.

Download full-text PDF

Source
http://dx.doi.org/10.1086/318100DOI Listing

Publication Analysis

Top Keywords

vertical position
8
energetic costs
8
costs
5
costs locomotion
4
locomotion vertic
4
vertic dynamics
4
dynamics cephalopods
4
cephalopods fish
4
fish world's
4
world's oceans
4

Similar Publications

Background: To compare the effects of first premolar extraction, molar distalization, and non-extraction treatments on the angulation and vertical positions of maxillary second molars (MxM2s) and maxillary third molars (MxM3s). To our knowledge, this is the first study to compare the effects of three different treatment types on MxM3 simultaneously.

Methods: Initial (T0) and final (T1) panoramic radiographs of three different patient groups were analyzed: first premolar extraction group (n = 26 patients, 52 MxM2, 52 MxM3), molar distalization group (n = 20 patients, 40 MxM2, 40 MxM3), and non-extraction group (n = 31 patients, 62 MxM2, 62 MxM3).

View Article and Find Full Text PDF

Purpose: To evaluate the efficacy and complications of simplified graded inferior oblique anterior transposition (IOAT) in treating at least 10 PD vertical deviation in the primary position and inferior oblique muscle overaction (IOOA).

Methods: This retrospective study reviewed the medical records of 65 patients treated with simplified graded IOAT procedures for both vertical deviation and IOOA. Patients were grouped according to vertical deviation in the primary position.

View Article and Find Full Text PDF

Objective: To determine whether the position of the bolster affects the access tract (supracostal/infracostal) for a superior calyceal puncture during prone PCNL and its effect on pleural complications.

Materials And Methods: It was a randomized clinical trial. Patients in whom superior calyceal puncture was done were divided into two groups by systematic sampling method, group 1 (horizontal bolster) and group 2 (vertical bolster), 50 patients in each group.

View Article and Find Full Text PDF

In living organisms, the natural motion caused by heartbeat, breathing, or muscle movements leads to the deformation of tissue caused by translation and stretching of the tissue structure. This effect results in the displacement or deformation of the plane of observation for intravital microscopy and causes motion-induced aberrations of the resulting image data. This, in turn, places severe limitations on the time during which specific events can be observed in intravital imaging experiments.

View Article and Find Full Text PDF

Optoelectronic tweezers (OET) offer a versatile, programmable, and contactless method for manipulating microscale objects. While factors like AC voltage and light intensity have been extensively studied, the role of light pattern curvature in the performance of OET manipulation remains underexplored. This study investigates how the curvature of light patterns affects the movement of polystyrene microparticles under negative dielectrophoretic (DEP) forces in an OET system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!