Film Formation from Nanosized Copolymeric Latex Particles: A Photon Transmission Study.

J Colloid Interface Sci

Department of Physics, Trakya University, Edirne, 22030, Turkey

Published: January 2001

The photon transmission technique was used to monitor the evolution of transparency during film formation from nanosized copolymeric latex particles. The latex films were prepared from poly(methyl methacrylate-co-butyl methacrylate) (P(MMA-co-BMA)) particles which were produced by microemulsion polymerization. These films were annealed at elevated temperatures in various time intervals above the glass transition temperature (T(g)) of P(MMA-co-BMA). It is observed that the transmitted photon intensity (I(tr)) from these films increased as the annealing temperature increased. There are three different film formation stages. These stages are explained by the void closure, healing, and interdiffusion processes, respectively. The activation energies for viscous flow (DeltaH approximately 16 kcal/mol), minor chains (DeltaE(H) approximately 27 kcal/mol), and backbone motion (Delta E(b) approximately 132 kcal/mol) were obtained using various models. Void closure (tau(v), T(v)) and healing points (tau(H), T(H)) were determined. Using the time-temperature pairs, void closure and healing activation energies were measured and found to be 21 and 30 kcal/mol, respectively. Copyright 2001 Academic Press.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jcis.2000.7234DOI Listing

Publication Analysis

Top Keywords

film formation
12
void closure
12
formation nanosized
8
nanosized copolymeric
8
copolymeric latex
8
latex particles
8
photon transmission
8
closure healing
8
activation energies
8
particles photon
4

Similar Publications

Cuprous oxide (CuO) thin films were chemically deposited from a solution onto GaAs(100) and (111) substrates using a simple three-component solution at near-ambient temperatures (10-60 °C). Interestingly, a similar deposition onto various other substrates including Si(100), Si(111), glass, fluorine-doped tin oxide, InP, and quartz resulted in no film formation. Films deposited on both GaAs(100) and (111) were found alongside substantial etching of the substrates.

View Article and Find Full Text PDF

Modification of the Se/MoO Rear Interface for Efficient Wide-Band-Gap Trigonal Selenium Solar Cells.

ACS Appl Mater Interfaces

January 2025

Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.

Trigonal selenium (t-Se) is a promising wide-band-gap photovoltaic material with a high absorption coefficient, abundant resources, simple composition, nontoxicity, and a low melting point, making it suitable for absorbers in advanced indoor and tandem photovoltaic applications. However, severe electrical losses at the rear interface of the t-Se absorber, caused by work function and lattice mismatches, limit the voltage output and overall performance. In this study, a strategy to enhance carrier transport and collection by modifying interfacial chemical interactions is proposed.

View Article and Find Full Text PDF

Surface-anchored metal-organic frameworks (surMOFs) are crystalline, nanoporous, supramolecular materials mounted to substrates that have the potential for integration within device architectures relevant for a variety of electronic, photonic, sensing, and gas storage applications. This research investigates the thin film formation of the Cu-BDC (copper benzene-1,4-dicarboxylate) MOF system on a carboxylic acid-terminated self-assembled monolayer by alternating deposition of solution-phase inorganic and organic precursors. X-ray diffraction (XRD) and atomic force microscopy (AFM) characterization demonstrate that crystalline Cu-BDC thin films are formed via Volmer-Weber growth.

View Article and Find Full Text PDF

Anticounterfeiting technologies have become increasingly crucial due to the growing issue of counterfeit goods, particularly in high-value industries. Traditional methods such as barcodes and holograms are prone to replication, prompting the need for advanced, cost-effective, and efficient solutions. In this work, a practical application of anodic aluminum oxide (AAO) membranes are presented for anticounterfeiting, which addresses the challenges of high production costs and complex fabrication processes.

View Article and Find Full Text PDF

2D P-doped carbon nitride as an effective artificial solid electrolyte interphase for the protection of Li anodes.

Phys Chem Chem Phys

January 2025

Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Fisicoquímica, X5000HUA Córdoba, Argentina.

Metallic lithium plays an important role in the development of next-generation lithium metal-based batteries. However, the uncontrolled growth of lithium dendrites limits the use of lithium metal as an anode. In this context, a stable solid electrolyte interphase (SEI) is crucial for regulating dendrite formation, stability, and cyclability of lithium metal anodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!