Somatic hypermutation specifically modifies rearranged immunoglobulin (Ig) genes in germinal center (GC) B cells. However, the bcl-6 gene can also acquire somatic mutations during the GC reaction, indicating that certain non-Ig genes can be targeted by the somatic hypermutation machinery. The CD95 gene, implicated in negative selection of B lymphocytes in GCs, is specifically expressed by GC B cells and was recently identified as a tumor suppressor gene being frequently mutated in (post) GC B cell lymphomas. In this study, the 5' region (5'R) and/or the last exon coding for the death domain (DD) of the CD95 gene were investigated in naive, GC, and memory B cells from seven healthy donors. About 15% of GC and memory, but not naive, B cells carried mutations within the 5'R (mutation frequency 2.5 x 10(-4) per basepair). Mutations within the DD were very rare but could be efficiently selected by inducing CD95-mediated apoptosis: in 22 apoptosis-resistant cells, 12 DD mutations were found. These results indicate that human B cells can acquire somatic mutations of the CD95 gene during the GC reaction, which potentially confers apoptosis resistance and may counteract negative selection through the CD95 pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2213498PMC
http://dx.doi.org/10.1084/jem.192.12.1833DOI Listing

Publication Analysis

Top Keywords

cd95 gene
16
human cells
8
germinal center
8
somatic hypermutation
8
acquire somatic
8
somatic mutations
8
negative selection
8
cells
7
gene
6
somatic
5

Similar Publications

The apoptotic molecule Fas and its ligand FasL are involved in the process of T-lymphocyte death, which may lead to lymphopenia, a characteristic of severe coronavirus disease 2019 (COVID-19). In this study, we investigated the influence of polymorphisms in the and genes, and gene expression, and plasma cytokine levels on COVID-19 severity and long COVID occurrence. A total of 116 individuals with severe COVID-19 and 254 with the non-severe form of the disease were evaluated.

View Article and Find Full Text PDF

The cell death receptor FAS and its ligand (FASLG) play crucial roles in the selection of B cells during the germinal center (GC) reaction. Failure to eliminate potentially harmful B cells via FAS can lead to lymphoproliferation and the development of B cell malignancies. The classic form of follicular lymphoma (FL) is a prototypic GC-derived B cell malignancy, characterized by the t(14;18)(q32;q21)IGH::BCL2 translocation and overexpression of antiapoptotic BCL2.

View Article and Find Full Text PDF

TNFAIP3-interacting protein 1 (ABIN-1) negatively regulates caspase-8/FADD-dependent pyroptosis.

FEBS J

January 2025

Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, China.

TNFAIP3-interacting protein 1 (TNIP1; also known as ABIN-1) is a ubiquitin-binding protein that suppresses death-receptor- or Toll-like receptor-mediated apoptosis and necroptosis; however, it remains unclear whether ABIN-1 is capable of regulating pyroptosis. In the present study, we found that, in mouse embryonic fibroblasts and macrophages, ABIN-1 deficiency sensitized cells to poly(I:C) + TAK1 inhibitor 5Z-7-oxozeaenol-induced pyroptosis besides apoptosis and necroptosis. The sensitizing effect of ABIN-1 deficiency on pyroptosis depended on caspase-8 and its adaptor molecule FAS-associated death domain protein.

View Article and Find Full Text PDF

Objectives: To investigate the effect of pachymic acid on brown/beige adipocyte differentiation and lipid metabolism in preadipocytes 3T3-L1 MBX.

Methods: The brown cocktail method was employed to induce 3T3-L1 MBX cells to differentiate into beige adipocytes. The impact of pachymic acid on the viability of 3T3-L1 MBX preadipocytes was evaluated using the CCK-8 assay.

View Article and Find Full Text PDF

Chimeric antigen receptor T cells (CART) targeting CD19 through CD28.ζ signaling induce rapid lysis of leukemic blasts, contrasting with persistent tumor control exhibited by 4-1BB.ζ-CART.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!