This article identifies and describes various epidemiological aspects in the natural transmission of Chagas disease in the Americas. It also examines the relative importance of the principal vector species in the disease's transmission and the control levels that are feasible in each instance. Estimations of the population at risk, number of infected cases, and number of chronic cases are presented. Prospects for control are discussed on the basis of past results to predict the expected results with introduced species like Triatoma infestans in the Southern Cone and Rhodnius prolixus in Central America and with the other autochthonous species in areas where they are found. Finally, the article discusses the role of other transmission mechanisms in the maintenance of endemic Chagas disease.
Download full-text PDF |
Source |
---|
Diabetes Obes Metab
January 2025
Department of Internal Medicine, University Hospital Clementino Fraga Filho, School of Medicine, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
Background/aims: The prognostic importance of changes in vibration-controlled transient elastography (VCTE) parameters, liver stiffness measurement (LSM), and controlled attenuation parameter (CAP), in individuals with type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD) is unknown.
Methods: A prospective cohort of 288 patients underwent 2 VCTE exams at least 2 years apart, and the relative percentage changes in LSM and CAP were calculated. Outcomes were the occurrence of any liver-related events (LREs), cardiovascular events (CVEs), and all-cause mortality.
Front Parasitol
February 2024
National Reference Center for Parasitology, Research Institute of the McGill University Center, Montreal, QC, Canada.
The Polymerase Chain Reaction (PCR) test is a highly sensitive, specific, and rapid diagnostic tool for Chagas disease. Chagas disease is caused by the protozoan flagellate and is endemic to the Americas. While conventional serological methods are still used in the diagnosis of Chagas disease, they are being gradually replaced by molecular methods like PCR.
View Article and Find Full Text PDFPharmacol Ther
January 2025
Laboratório de Neuroimunologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. Electronic address:
The purinergic P2Y receptors comprise eight G-coupled receptor (GPCR) subtypes already identified (P2Y, P2Y, P2Y, P2Y, P2Y, P2Y). P2Y receptor physiological agonists are extracellular purine and pyrimidine nucleotides such as ATP (Adenosine triphosphate), ADP (Adenosine diphosphate), UTP (Uridine triphosphate), UDP (Uridine diphosphate), and UDP-glucose. These receptors are expressed in almost all cells.
View Article and Find Full Text PDFACS Med Chem Lett
January 2025
Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven 3000, Belgium.
Cruzipain (CZP) is an essential cysteine protease of , the etiological agent of Chagas disease, and a promising druggable target. To date, no CZP inhibitors have reached clinical use, with research efforts mostly hampered by insufficient potency, limited target selectivity or lack of bioactivity translation from the isolated enzyme to the parasite in cellular environments. In this study, we report the design of , a 1,2,3-triazole-based targeted covalent inhibitor with nanomolar potency (IC = 28 nM) and null inhibition of human cathepsin L.
View Article and Find Full Text PDFEClinicalMedicine
January 2025
Division of Infectious Diseases, Department of Medicine, University of Colorado Denver, Aurora, CO, USA.
Background: Endemic in more than 20 countries, Chagas disease affects 6.3 million people worldwide, leading to 28,000 new infections and 7700 deaths each year. Previous meta-analyses on antiparasitic treatment need updates to encompass recent studies and to assess key clinically meaningful endpoints.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!