In this study, we examined the ability of human T-cell leukemia virus type I (HTLV-I) Gag and Gag-Pro to assemble immature virus-like particles (VLPs) and bud from insect and mammalian cells. Transmission electron microscopy of insect cells infected with a recombinant baculovirus carrying the entire gag gene revealed that Pr53(Gag) is targeted to the plasma membrane, where it extensively accumulates and forms electron-dense evaginations. However, no particles could be detected either inside the cells or in the culture supernatants. With the Gag-Pro-expressing construct, we observed HTLV-I-specific cytoplasmic proteolysis of the Gag precursor, but again no particle released in the culture supernatants. Transmission electron microscopic analysis of insect cells expressing Gag-Pro polyprotein revealed large vacuoles in the cytoplasm and no budding particles at the plasma membrane. In contrast, human immunodeficiency virus type 1 Gag polyprotein expressed in insect cells is able to release VLPs. These data showed that unlike other retroviruses, Pr53(Gag) is unable to be released as immature VLPs from insect cells. To determine whether the block in particle budding and release is due to an intrinsic property of Pr53(Gag) or the absence of essential cellular factors in insect cells, we expressed Gag and Gag-Pro polyproteins in human 293 cells. The results indicate that Pr53(Gag) and p24 capsid are released within particles into the culture supernatants of human 293 cells. We found that the myristylation of the N-terminal glycine residue is essential for Gag release. Altogether, these results strongly suggest that the proper assembly of HTLV-I particles is dependent on mammalian host cell factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/viro.2000.0663 | DOI Listing |
PLoS Pathog
January 2025
Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.
The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in Culex tarsalis-an extremely efficient vector of West Nile virus (WNV)-nonexistent. We performed single-cell RNA sequencing on Cx.
View Article and Find Full Text PDFUnlabelled: 20-carbon fatty acid-derived eicosanoids are versatile signaling oxylipins in mammals. In particular, a group of eicosanoids termed prostanoids are involved in multiple physiological processes, such as reproduction and immune responses. Although some eicosanoids such as prostaglandin E2 (PGE2) have been detected in some insect species, molecular mechanisms of eicosanoid synthesis and signal transduction in insects have been poorly investigated.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Biology, Appalachian State University, Boone, North Carolina, United States.
Nociception is the process by which sensory neurons detect and encode potentially harmful environmental stimuli to generate behavioral responses. Nociceptor neurons exhibit plasticity in which their sensitivity to noxious stimuli and subsequent ability to drive behavior may be altered by environmental conditions, injury, infection, and inflammation. In some cases, nociceptor sensitization requires regulated changes in gene expression, and recent studies have indicated roles for post-transcriptional mechanisms in regulating these changes as an aspect of nociceptor plasticity.
View Article and Find Full Text PDFIndian J Pathol Microbiol
January 2025
Department of Medical Oncology, Regional Cancer Centre, Trivandrum, Kerala, India.
Hematological malignancies are known to have cutaneous manifestations, either in the form of direct infiltration of skin by malignant cells or as a result of paraneoplastic syndrome. Many hematological malignancies, including chronic lymphocytic leukemia (CLL), are known to cause malignancy-induced Eosinophilic Dermatoses. We present a case of an elderly woman who presented with multiple pruritic patches.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.
Aedes mosquitoes transmit pathogenic arthropod-borne (arbo) viruses, putting nearly half the world's population at risk. Blocking virus replication in mosquitoes is a promising approach to prevent arbovirus transmission, the development of which requires in-depth knowledge of virus-host interactions and mosquito immunity. By integrating multi-omics data, we find that heat shock factor 1 (Hsf1) regulates eight small heat shock protein (sHsp) genes within one topologically associated domain in the genome of the Aedes aegypti mosquito.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!