The GreA and GreB proteins of Escherichia coli show a multitude of effects on transcription elongation in vitro, yet their physiological functions are poorly understood. Here, we investigated whether and how these factors influence lateral oscillations of RNA polymerase (RNAP) in vivo, observed at a protein readblock. When RNAP is stalled within an (ATC/TAG)(n) sequence, it appears to oscillate between an upstream and a downstream position on the template, 3 bp apart, with concomitant trimming of the transcript 3' terminus and its re-synthesis. Using a set of mutant E.coli strains, we show that the presence of GreA or GreB in the cell is essential to induce this trimming. We show further that in contrast to a ternary complex that is stabilized at the downstream position, the oscillating complex relies heavily on the GreA/GreB-induced 'cleavage-and-restart' process to become catalytically competent. Clearly, by promoting transcript shortening and re-alignment of the catalytic register, the Gre factors function in vivo to rescue RNAP from being arrested at template positions where the lateral stability of the ternary complex is impaired.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC305891 | PMC |
http://dx.doi.org/10.1093/emboj/19.24.6853 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!