A comparison of observations with simulations of a coupled ocean-atmosphere general circulation model shows that both natural and anthropogenic factors have contributed significantly to 20th century temperature changes. The model successfully simulates global mean and large-scale land temperature variations, indicating that the climate response on these scales is strongly influenced by external factors. More than 80% of observed multidecadal-scale global mean temperature variations and more than 60% of 10- to 50-year land temperature variations are due to changes in external forcings. Anthropogenic global warming under a standard emissions scenario is predicted to continue at a rate similar to that observed in recent decades.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.290.5499.2133 | DOI Listing |
Sci Rep
January 2025
Department of Geography, School of Environment, Education and Development, The University of Manchester, Arthur Lewis Building, Oxford Road, Manchester, M13 9PL, UK.
Urban woodland composition and configuration have strong associations with land surface temperatures (LST), but the evidence is contradictory due to different spatial scales, regional climate zones, woodland types and urban contexts. In this study, we analyse associations between urban woodland and LST within and between five cities in different Köppen climate zones. Our consistent methodology is framed around local climate zones and conducted at a fine spatial scale.
View Article and Find Full Text PDFNat Commun
January 2025
Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, USA.
Phase transitions in the mantle control its internal dynamics and structure. The post-spinel transition marks the upper-lower mantle boundary, where ringwoodite dissociates into bridgmanite plus ferropericlase, and its Clapeyron slope regulates mantle flow across it. This interaction has previously been assumed to have no lateral spatial variations, based on the assumption of a linear post-spinel boundary in pressure and temperature.
View Article and Find Full Text PDFNat Commun
January 2025
Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
During cold acclimation in high-latitude and high-altitude regions, japonica rice develops enhanced cold tolerance, but the underlying genetic basis remains unclear. Here, we identify CTB5, a homeodomain-leucine zipper (HD-Zip) transcription factor that confers cold tolerance at the booting stage in japonica rice. Four natural variations in the promoter and coding regions enhance cold response and transcriptional regulatory activity, enabling the favorable CTB5 allele to improve cold tolerance.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266404, China.
Antibiotic resistance genes (ARGs) are emerging environmental pollutants, posing an escalating threat to public health and environmental security worldwide. However, the relationship between ARGs and microbial communities in the environment, as well as their ecological effects on the microbe-mediated materials cycle remain unclear. In this study, we investigated the spatial distribution pattern, influence mechanism, relationship with microorganisms, and their effects on the elemental cycling of ARGs in East China Sea sediments.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
Background/objectives: Selective laser sintering (SLS) is one of the most promising 3D printing techniques for pharmaceutical applications as it offers numerous advantages, such as suitability to work with already approved pharmaceutical excipients, the elimination of solvents, and the ability to produce fast-dissolving, porous dosage forms with high drug loading. When the powder mixture is exposed to elevated temperatures during SLS printing, the active ingredients can be converted from the crystalline to the amorphous state, which can be used as a strategy to improve the dissolution rate and bioavailability of poorly soluble drugs. This study investigates the potential application of SLS 3D printing for the fabrication of tablets containing the poorly soluble drug carvedilol with the aim of improving the dissolution rate of the drug by forming an amorphous form through the printing process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!