Deciphering a weed. Genomic sequencing of Arabidopsis.

Plant Physiol

Exelixis, Inc., 170 Harbor Way, P.O. Box 511, South San Francisco, California 94083-0511, USA.

Published: December 2000

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1539295PMC
http://dx.doi.org/10.1104/pp.124.4.1456DOI Listing

Publication Analysis

Top Keywords

deciphering weed
4
weed genomic
4
genomic sequencing
4
sequencing arabidopsis
4
deciphering
1
genomic
1
sequencing
1
arabidopsis
1

Similar Publications

Article Synopsis
  • The study investigates how nitrogen-doped biomass carbon (NC-180) effectively detects and removes toxic mercury(II) ions from water.
  • Analysis techniques like HR-TEM, XRD, and XPS confirm the material's structure and the presence of nitrogen functional groups that facilitate mercury binding.
  • The sustainable approach utilizes the invasive plant Lantana camara to create NC-180, achieving efficient mercury detection with a low limit of 7.2 nM and recovery capabilities through L-cysteine interaction.
View Article and Find Full Text PDF

Background: Cover cropping is an agricultural practice that uses secondary crops to support the growth of primary crops through various mechanisms including erosion control, weed suppression, nutrient management, and enhanced biodiversity. Cover crops may elicit some of these ecosystem services through chemical interactions with the soil microbiome via root exudation, or the release of plant metabolites from roots. Phytohormones are one metabolite type exuded by plants that activate the rhizosphere microbiome, yet managing this chemical interaction remains an untapped mechanism for optimizing plant-soil-microbiome interactions.

View Article and Find Full Text PDF

Water hyacinth (Eichhornia crassipes (Mart.) Solms) is a highly invasive aquatic weed native to the Amazonia basin, known for its rapid propagation, adaptability, and utilization in traditional medicine. The study aims to unveil the therapeutic potential of water hyacinth flowers methanolic extract (EC CME) and its four kupchan fractions (EC PESF, EC DCMSF, EC EASF, EC ASF) through diversified chemical-pharmacological approaches.

View Article and Find Full Text PDF

White mustard, (Sinapis alba), a problematic broadleaf weed in many Mediterranean countries in arable fields has been detected as resistant to tribenuron-methyl in Tunisia. Greenhouse and laboratory studies were conducted to characterize Target-Site Resistance (TSR) and the Non-Target Site Resistance (NTSR) mechanisms in two suspected white mustard biotypes. Herbicide dose-response experiments confirmed that the two S.

View Article and Find Full Text PDF

Deciphering the Genetic Basis of Allelopathy in japonica Rice Cultivated in Temperate Regions Using a Genome-Wide Association Study.

Rice (N Y)

March 2024

Departamento del Arroz, Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315. km 10.7, 46113, Moncada, Valencia, Spain.

Allelopathy has been considered as a natural method of weed control. Despite the nature of allelochemical compounds has been studied, little is known about the genetic basis underlying allelopathy. However, it is known that rice exhibits diverse allelopathic potentials across varieties, and breeding for rice plants exhibiting allelopathic potential conferring an advantage against weeds in paddy fields would be highly desirable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!