Background: 5-Fluorouracil (FU) in association with folinic acid (FA) is the most frequently used chemotherapeutic agent in colorectal cancer but it often causes diarrhoea. Animal and human studies suggest that glutamine stimulates intestinal mucosal growth.
Aim: To determine if oral glutamine prevents changes in intestinal absorption (IA) and permeability (IP) induced by FU/FA.
Methods: Seventy chemotherapy naive patients with colorectal cancer were randomly assigned to oral glutamine (18 g/day) or placebo before the first cycle of FU (450 mg/m(2)) and FA (100 mg/m(2)) administered intravenously for five days. Treatment was continued for 15 days, starting five days before the beginning of chemotherapy. IA (D-xylose urinary excretion) and IP (cellobiose-mannitol test) were assessed at baseline and four and five days after the end of the first cycle of chemotherapy, respectively. Patients kept a daily record of diarrhoea, scored using the classification system of the National Cancer Institute (Bethesda, Maryland, USA). Duration of diarrhoea was recorded and the area under the curve (AUC) was calculated for each patient.
Results: Baseline patient characteristics and basal values of IP and IA tests were similar in the two arms. After one cycle of chemotherapy, the reduction in IA (D-xylose absorption) was more marked in the placebo arm (7.1% v 3. 8%; p=0.02); reduction of IP to mannitol was higher in the placebo arm (9.2% v 4.5%; p=0.02); and urinary recovery of cellobiose was not different between the study arms (p=0.60). Accordingly, the cellobiose-mannitol ratio increased more in the placebo arm (0.037 v 0.012; p=0.04). Average AUC of diarrhoea (1.9 v 4.5; p=0.09) and average number of loperamide tablets taken (0.4 v 2.6; p=0.002) were reduced in the glutamine arm.
Conclusions: Glutamine reduces changes in IA and IP induced by FU and may have a protective effect on FU induced diarrhoea.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1728161 | PMC |
http://dx.doi.org/10.1136/gut.48.1.28 | DOI Listing |
Cell Commun Signal
January 2025
School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.
Glutamine is the most abundant amino acid in human serum, and it can provide carbon and nitrogen for biosynthesis, which is crucial for proliferating cells. Moreover, it is widely known that glutamine metabolism is reprogrammed in cancer cells. Many cancer cells undergo metabolic reprogramming targeting glutamine, increasing its uptake to meet their rapid proliferation demands.
View Article and Find Full Text PDFJ Nutr Biochem
January 2025
Faculty of Health, Southern Cross University, Gold Coast, QLD, 4225, Australia. Electronic address:
Glutamine availability may be reduced in chronic diseases, such as type 2 diabetes mellitus (T2DM)-induced by obesity. Herein, the antioxidant, anti-inflammatory and lipid metabolism effects of chronic oral glutamine supplementation in its free and dipeptide form were assessed in ob/ob mice. Adult male C57BL/6J ob/ob mice were supplemented with L-alanyl-L-glutamine (DIP) or free L-glutamine (GLN) in the drinking water for 40 days, whilst C57BL/6J Wild-type lean (WT) and control ob/ob mice (CTRL) received fresh water only.
View Article and Find Full Text PDFFront Nutr
December 2024
Department of Radiation Oncology, University Hospital of Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain.
Trials
December 2024
Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
Background: Diabetes is a significant risk factor for sarcopenia, a muscle dystrophy affecting older individuals. Sarcopenia management typically involves resistance exercise and oral supplements. Given the limitations of resistance training for many elderly individuals, oral supplements play a crucial role in treatment.
View Article and Find Full Text PDFNMR Biomed
February 2025
High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
Deuterium metabolic imaging (DMI) is an emerging Magnetic Resonance technique providing valuable insight into the dynamics of cellular glucose (Glc) metabolism of the human brain in vivo using deuterium-labeled (H) glucose as non-invasive tracer. Reliable concentration estimation of H-Glc and downstream synthesized neurotransmitters glutamate + glutamine (Glx) requires accurate knowledge of relaxation times, but so far tissue-specific T and T relaxation times (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!