Genotype analysis and phenotypic manifestations of children with intermediate sweat chloride test results.

Chest

Departements de Pneumologie Pediatrique-INSERM U515, Hopital Trousseau AP-HP, Universite Paris VI, Paris, France.

Published: December 2000

Study Objectives: Cystic fibrosis (CF) is one of the most common inherited diseases among whites. Since the cloning of the CF transmembrane conductance regulator (CFTR) gene, a number of studies have focused on associations between the genotype and phenotype in CF. This had led to the progressive identification of new groups of patients, including those who have mild lung disease and those who have normal sweat chloride values (< 60 mEq/L). The aim of the present work was to provide information on the genotype and the phenotypic characteristics of children with intermediate-range sweat chloride test results.

Patients And Results: We focused on children referred to the pulmonary department for various types of pulmonary disease and who had several sweat chloride test results with median values in the range of 40 to 60 mEq/L. Twenty-four patients over a 10-year period were enrolled (mean age, 4.8 years). Respiratory manifestations at initial evaluation included recurrent bronchitis, wheezing, chronic cough, and pneumonia. The duration of the follow-up ranged from 0.5 to 10.5 years. Sputum cultures revealed the presence of Haemophilus influenzae (10 children), Staphylococcus aureus (4 children), and Pseudomonas aeruginosa (3 children). Pancreatic insufficiency was found in two patients. Analysis of the entire coding sequence allowed identification of 16 known mutations in CFTR gene. Fifteen chromosomes (31.2%) carried a mutation in CFTR gene and one allele carried two mutations. Three patients were homozygous or double heterozygous (DeltaF508/DeltaF508, DeltaF508/3849 + 10 kb C-->T, S1235R/G551D). The 5-thymidine allele was identified in four children.

Conclusion: These results indicate an higher frequency of CFTR gene mutations in patients with borderline sweat chloride test results, compared to data reported in the general population. They lead to the recommendations for complete pulmonary and GI investigations in this group of patients, as well as assiduous care and medical follow-up.

Download full-text PDF

Source
http://dx.doi.org/10.1378/chest.118.6.1591DOI Listing

Publication Analysis

Top Keywords

sweat chloride
20
chloride test
16
cftr gene
16
children
6
patients
6
sweat
5
chloride
5
genotype analysis
4
analysis phenotypic
4
phenotypic manifestations
4

Similar Publications

Sweat chloride reflects CFTR function and correlates with clinical outcomes following CFTR modulator treatment.

J Cyst Fibros

January 2025

Cystic Fibrosis Therapeutics Development Network Coordinating Center, Seattle Children's Hospital, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Department of Biostatistics, University of Washington, Seattle, WA, USA.

Background: Highly effective CFTR modulators improve CFTR function and lead to dramatic improvements in health outcomes in many people with cystic fibrosis (pwCF). The relationship between measures of CFTR function, such as sweat chloride concentration, and clinical outcomes in pwCF treated with CFTR modulators is poorly defined. We conducted analyses to better understand the relationships between sweat chloride and CFTR function in vitro, and between sweat chloride and clinical outcomes following CFTR modulator treatment.

View Article and Find Full Text PDF

Elexacaftor/Tezacaftor/Ivacaftor (ETI) is a CFTR modulator therapy approved for people with cystic fibrosis (pwCF) who have at least one phe508del mutation. However, its approval in the European Union (EU) for pwCF with non-phe508del mutations is lacking, because data on treatment response in this subgroup are scarce. This retrospective observational study evaluated six pwCF (ages 6 to 66) with responsive CFTR mutations (M1101K, R347P, 2789+5G>A, G551D) undergoing off-label ETI therapy.

View Article and Find Full Text PDF

The conductive polymeric electrodes using 3D printing are an innovative material development with the advantage of the flexibility of integrating isolated polymers with a higher electrical conductivity of carbon-based materials, generating new possibilities in environmental, healthcare, and food monitoring. Based on the morphology, geometric arrangement, and dielectric properties of the composites, the performance of the electrodes is improved. Structural designs are optimized to enhance functionalities such as adhesion, catalytic activity, and the reduction of interface energy.

View Article and Find Full Text PDF

Diagnosing cystic fibrosis in low- and middle-income countries: challenges and strategies.

Orphanet J Rare Dis

December 2024

Ion Channels and Channelopathies Laboratory, Institute for Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, Bern, CH-3012, Switzerland.

Background: Cystic Fibrosis is caused by recessively inherited variants of the cystic fibrosis transmembrane regulator. It is associated with diverse clinical presentations that can affect the respiratory, digestive, and reproductive systems and inhibit nutrient absorption and growth.

Main Body: The current estimation of people affected by Cystic Fibrosis is likely underestimated as this disease remains undiagnosed in countries with limited diagnostic capacity.

View Article and Find Full Text PDF

Hydrogel-based colorimetric power-saving sensors for on-site detection of chloride ions and glucose in sweat.

Biosens Bioelectron

March 2025

Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu, 30010, Taiwan. Electronic address:

Noninvasive diagnostics play a crucial role in health monitoring and disease detection. Sweat is a representative sample type containing various clinical biomarkers that provide information on certain disease risks. We developed a hydrogel-based colorimetric sensor for sweat analysis using a low-power battery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!