Studies on biomineralization in bone have opened new arenas in the field of fabrication and engineering of bone-graft devices. A new bioinorganic composite was prepared by introducing processed collagenous matrices into the calcifying solutions at pH 7.8-8.0. The calcifying solutions were prepared by using a saturated dicalcium salt solution. Hydroxyapatite grew on the matrix over a period of 3-5 days in a specially designed crystallizing chamber. Changes in biochemical characters and biophysical parameters have given interesting insights into factors affecting and effecting initiation and progression of calcification on organic matrices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/ba20000055 | DOI Listing |
Nat Commun
January 2025
Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
Dual active sites with synergistic valence state regulation under oxidizing and reducing conditions are essential for catalytic reactions with step-wise mechanisms to modulate the complex adsorption sites of reactant molecules on the surfaces of heterogeneous catalysts with maximized catalytic performances, but it has been rarely explored. In this work, uniformly dispersed CuCo alloy and CoO nanosheet composite catalysts with dual active sites are constructed, which shows huge boost in activity for catalyzing water-gas shift reaction (WGSR), with a record high reaction rate reaching 204.2 μmol g s at 300 °C for CuCoO amongst the reported Cu-based and Co-based catalysts.
View Article and Find Full Text PDFDalton Trans
January 2025
Karlsruhe Institute of Technology (KIT), Institute for Inorganic Chemistry, Engesserstrasse 15, 76131 Karlsruhe, Germany.
(Eu[PTC])(Eu[TREN-1,2-HOPO]) inorganic-organic hybrid nanoparticles (IOH-NPs) contain Eu, tris[(1-hydroxy-2-oxo-1,2-dihydropyridine-6-carboxamido)ethyl]amine (TREN-1,2-HOPO) and perylene-3,4,9,10-tetracarboxylate (PTC). The IOH-NPs are prepared in water and exhibit a rod-type shape, with a length of 60 nm and a diameter of 5 nm. Particle size and chemical composition are examined by different methods (SEM, DLS, FT-IR, TG, C/H/N analysis).
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China. Electronic address:
Although Z-scheme heterojunction composites have been widely studied in photocatalysis, in-depth investigation of oxygen vacancies (Ov) in the Z-scheme photocatalysts is still rare. Herein, an oxygen vacancies modified NU-1000/BiOCl-Ov composite with Z-scheme heterojunction was rationally designed and fabricated. The combination of X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) experiment verified the presence of oxygen vacancies, meanwhile the Z-scheme charge transfer across the heterojunction interface was confirmed in detail by the in situ-XPS, Kelvin probe force microscope (KPFM) studies, ultraviolet photoelectron spectroscopy (UPS), EPR radical capture experiment, as well as density functional theory (DFT) calculation.
View Article and Find Full Text PDFSmall
December 2024
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China.
Nano Lett
November 2024
Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China.
With the growing demand for clean energy, efficient uranium extraction technologies are needed, especially from seawater, where uranium reserves are huge. Here, we developed a composite membrane by inserting engineered with super uranyl-binding protein (SUP) within a two-dimensional (2D) MXene (TiCT) layer. SUP endowed the bioinorganic hybrid membrane with ultrahigh selectivity for uranyl ions, while the engineered improved the mechanical strength and economy of the membranes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!