Effects of vector-averaged gravity on tumor necrosis factor (TNF)-alpha-dependent activation of nuclear factor kappa B (NF-kappa B) in human osteoblastic HOS-TE85 cells were investigated by culturing the cells using clinostat rotation (clinorotation). Cell cultures were rotated for 72 h at 40 rpm in a clinostat. At the end of clinorotation, the cells were treated with TNF-alpha for 30 min under stationary conditions. Electrophoretic mobility shift assays revealed that TNF-alpha-dependent activation of NF-kappa B was markedly reduced in the clinorotated cells when compared with the cells in control stationary cultures or after horizontal rotation (motional controls). The NF-kappa B-dependent transactivation was also impaired in the clinorotated cells, as evidenced by a transient transfection assay with a reporter plasmid containing multimerized NF-kappa B sites. Consistent with these findings, the TNF-alpha-dependent induction of endogenous NF-kappa B-responsive genes p105, I kappa B-alpha, and IL-8, was significantly attenuate in clinorotated cells. These results demonstrate that vector-averaged gravity inhibits the responsiveness of osteoblasts to TNF-alpha by repressing NF-kappa B activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/bbrc.2000.3945 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!