Using multiple exons trapped from human chromosome 21 (HC21)-specific cosmids with homology to a putative Arabidopsis thaliana glycerol 3-phosphate permease, we have determined the full-length cDNA sequence of a novel HC21 gene encoding a putative sugar-phosphate transporter (HGMW-approved symbol SLC37A1, aka G3PP). The predicted protein has 12 putative transmembrane domains and is also highly homologous to bacterial glpT proteins. The transcript was precisely mapped to 21q22.3 between D21S49 and D21S113. Comparison of the SLC37A1 cDNA to genomic sequence revealed that the gene encompasses 82 kb, and it is split into 19 coding exons and 7 untranslated exons, which are alternatively spliced in a complex and tissue-specific manner. Glycerol 3-phosphate (G3P) is produced by glycerol kinase (GK) and is found in several biochemical pathways in different cellular compartments, such as the glycerol phosphate shuttle and glycerophospholipid synthesis. Thus SLC37A1 mutations may cause a phenotype similar to GK deficiency. Mutational analyses of SLC37A1 in seven patients with no mutations in the GK gene and low GK activity revealed only nonpathogenetic sequence variants, excluding SLC37A1 as the gene for the phenotype in these patients. SLC37A1 maps in the refined critical region of the autosomal recessive deafness locus, DFNB10, on 21q22.3. Mutation analyses also excluded SLC37A1 as the gene for DFNB10.

Download full-text PDF

Source
http://dx.doi.org/10.1006/geno.2000.6395DOI Listing

Publication Analysis

Top Keywords

glycerol 3-phosphate
12
3-phosphate permease
8
slc37a1
8
21q223 mutation
8
glycerol kinase
8
slc37a1 gene
8
glycerol
6
gene
6
cloning characterization
4
putative
4

Similar Publications

Phospholipids are an essential constituent of cells with all life thought to produce these compounds with either a glycerol or sphingoid moiety at their core. For the first time, we demonstrate that a thermophilic bacterium, NGM72.4, produces a third type of phospholipid, serinophospholipids, which are distinct from glycero- and sphingophospholipids by featuring a serinol backbone instead.

View Article and Find Full Text PDF

Mycoplasma pneumoniae drives macrophage lipid uptake via GlpD-mediated oxidation, facilitating foam cell formation.

Int J Med Microbiol

January 2025

Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.

Cardiovascular diseases, primarily caused by atherosclerosis, are a major public health concern worldwide. Atherosclerosis is characterized by chronic inflammation and lipid accumulation in the arterial wall, leading to plaque formation. In this process, macrophages play a crucial role by ingesting lipids and transforming into foam cells, which contribute to plaque instability and cardiovascular events.

View Article and Find Full Text PDF

Identification of a novel heterozygous GPD1 missense variant in a Chinese adult patient with recurrent HTG-AP consuming a high-fat diet and heavy smoking.

BMC Med Genomics

January 2025

Department of Critical Care Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, China.

Background: Glycerol-3-phosphate dehydrogenase 1 (GPD1) gene defect can cause hypertriglyceridemia (HTG), which usually occurs in infants. The gene defect has rarely been reported in adult HTG patients. In the present study, we described the clinical and functional analyses of a novel GPD1 missense variant in a Chinese adult patient with recurrent hypertriglyceridemia‑related acute pancreatitis (HTG-AP), consuming a high-fat diet and smoking heavily.

View Article and Find Full Text PDF

VCP downstream metabolite glycerol-3-phosphate (G3P) inhibits CD8T cells function in the HCC microenvironment.

Signal Transduct Target Ther

January 2025

Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.

CD8T cells within the tumor microenvironment (TME) are often functionally impaired, which limits their ability to mount effective anti-tumor responses. However, the molecular mechanisms behind this dysfunction remain incompletely understood. Here, we identified valosin-containing protein (VCP) as a key regulator of CD8T cells suppression in hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF

Ergothioneine improves healthspan of aged animals by enhancing cGPDH activity through CSE-dependent persulfidation.

Cell Metab

January 2025

Leibniz Institute for Analytical Sciences, ISAS e.V., Dortmund, Germany; School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK. Electronic address:

Ergothioneine (ET), a dietary thione/thiol, is receiving growing attention for its possible benefits in healthy aging and metabolic resilience. Our study investigates ET's effects on healthspan in aged animals, revealing lifespan extension and enhanced mobility in Caenorhabditis elegans, accompanied by improved stress resistance and reduced age-associated biomarkers. In aged rats, ET administration enhances exercise endurance, muscle mass, and vascularization, concomitant with higher NAD levels in muscle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!