The assembly of large BACs by in vivo recombination.

Genomics

Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, United Kingdom.

Published: December 2000

We have developed a method for recombining bacterial artificial chromosomes (BACs) and P1 artificial chromosomes (PACs) containing large genomic DNA fragments into a single vector using the Cre-lox recombination system from bacteriophage P1 in vivo. This overcomes the limitations of in vitro methods for generating large constructs based on restriction digestion, ligation, and transformation of DNA into Escherichia coli cells. We used the method to construct a human artificial chromosome vector of 404 kb encompassing long tracts of alpha satellite DNA, telomeric sequences, and the human hypoxanthine phosphoribosyltransferase gene. The specificity of Cre recombinase for loxP sites minimizes the possibility of intramolecular rearrangements, unlike previous techniques using general homologous recombination in E. coli, and makes our method compatible with the presence of large arrays of repeated sequences in cloned DNA. This methodology may also be applied to retrofitting PACs or BACs with markers and functional sequences.

Download full-text PDF

Source
http://dx.doi.org/10.1006/geno.2000.6372DOI Listing

Publication Analysis

Top Keywords

artificial chromosomes
8
assembly large
4
large bacs
4
bacs vivo
4
vivo recombination
4
recombination developed
4
developed method
4
method recombining
4
recombining bacterial
4
bacterial artificial
4

Similar Publications

Background: Runs of homozygosity (ROHs) and heterozygosity (ROHets) serve for the identification of genomic regions as candidates of selection, local adaptation, and population history.

Methods: The present study aimed to comprehensively explore the ROH and ROHet patterns and hotspots in Greek native dairy goats, Eghoria and Skopelos, genotyped with the Illumina Goat SNP50 BeadChip. SNP and functional enrichment analyses were conducted to further characterize hotspots and the candidate genes located within these genomic regions.

View Article and Find Full Text PDF

Mature aggressive B-cell lymphomas, such as Burkitt lymphoma (BL) and Diffuse large B-cell lymphoma (DLBCL), show variations in microRNA (miRNA) expression. The entity of High-grade B-cell lymphoma with 11q aberration (HGBCL-11q) shares several biological features with both BL and DLBCL but data on its miRNA expression profile are yet scarce. Hence, this study aims to analyze the potential differences in miRNA expression of HGBCL-11q compared to BL and DLBCL.

View Article and Find Full Text PDF

New insights into interspecies relationships, chromosomal evolution, and hybrid identification in the Lycoris Herb.

BMC Plant Biol

January 2025

Jiangxi Provincial Key Laboratory of Subtropical Forest Resources Cultivation, 2011 Collaboration Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China.

Background: Frequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose significant challenges to the identification and classification of hybrids, thereby impacting the application and development of Lycoris. This study utilizes karyotype structure, genome size, and fluorescent in situ hybridization (FISH) technology to explore the chromosomal evolution and hybrid identification of Lycoris employing three approaches at the cytogenetic level.

Results: The findings indicate that species with a smaller basic chromosome number exhibit less asymmetry than those with a larger basic chromosome number, suggesting that species with different basic chromosome numbers may have followed different evolutionary pathways.

View Article and Find Full Text PDF

Construction and iterative redesign of synXVI a 903 kb synthetic Saccharomyces cerevisiae chromosome.

Nat Commun

January 2025

School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.

The Sc2.0 global consortium to design and construct a synthetic genome based on the Saccharomyces cerevisiae genome commenced in 2006, comprising 16 synthetic chromosomes and a new-to-nature tRNA neochromosome. In this paper we describe assembly and debugging of the 902,994-bp synthetic Saccharomyces cerevisiae chromosome synXVI of the Sc2.

View Article and Find Full Text PDF

Rapid Generation of Reverse Genetics Systems for Coronavirus Research and High-Throughput Antiviral Screening Using Gibson DNA Assembly.

J Med Virol

January 2025

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.

Coronaviruses (CoVs) pose a significant threat to human health, as demonstrated by the COVID-19 pandemic. The large size of the CoV genome (around 30 kb) represents a major obstacle to the development of reverse genetics systems, which are invaluable for basic research and antiviral drug screening. In this study, we established a rapid and convenient method for generating reverse genetic systems for various CoVs using a bacterial artificial chromosome (BAC) vector and Gibson DNA assembly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!