Stability of DNA repeats in Escherichia coli dam mutant strains indicates a Dam methylation-dependent DNA deletion process.

Gene

German Cancer Research Center, aBiomedical Structure Analysis (A0600), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.

Published: November 2000

In this study we report on the stabilization of short direct repetitive DNA elements. We arranged a 20 bp SK-primer element in a direct repeat manner within the cloning vector pBluescript KS (+). This resulted in an array of 27 direct repeats consisting of 24 bp units. We show that this plasmid could only be propagated without deletion of repeats in dam mutant Escherichia coli hosts, whereas all efforts to use strains that were defective in the methylation-dependent restriction system and the recA- or the mismatch repair-dependent deletion system failed. The deletions always affected whole repeat units and not parts of them, leading to an unpredictable reduction of the unit number down to a range of between 12 and two during propagation. We conclude that a Dam methylation-dependent, but recA- and mismatch repair-independent, deletion mechanism caused the DNA rearrangements without an obvious involvement of the known methylated-DNA restriction systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0378-1119(00)00420-0DOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
dam mutant
8
dam methylation-dependent
8
reca- mismatch
8
stability dna
4
dna repeats
4
repeats escherichia
4
dam
4
coli dam
4
mutant strains
4

Similar Publications

In integrated crop-livestock systems, livestock graze on cover crops and deposit raw manure onto fields to improve soil health and fertility. However, enteric pathogens shed by grazing animals may be associated with foodborne pathogen contamination of produce influenced by fecal-soil microbial interactions. We analyzed 300 fecal samples (148 from sheep and 152 from goats) and 415 soil samples (272 from California and 143 from Minnesota) to investigate the effects of grazing and the presence of non-O157 Shiga toxin-producing Escherichia coli (STEC) or generic E.

View Article and Find Full Text PDF

Background: Geraniol 10-hydroxylase (G10H) is a cytochrome P450 monooxygenase involved in regulation, which is involved in the biosynthesis of monoterpene. However, G10H is not characterized at the enzymatic mechanism and regulatory function in .

Methods And Results: A gene related to the biosynthesis of monoterpenoid, geraniol 10-hydroxylase, has been cloned from the medicinal plant .

View Article and Find Full Text PDF

Animals can use specific environmental cues to make informed decisions about whether and where to disperse. Patch conditions are known to affect the dispersal behavior of animals, but empirical studies investigating the impact of resource diversity on the dispersal of closely related species are largely lacking. In this study, we investigated how food diversity affects the dispersal behavior of three co-occurring cryptic species of the marine bacterivorous nematode complex (Pm I, Pm III and Pm IV).

View Article and Find Full Text PDF

Cases of antibiotic-resistant () infections are becoming increasingly frequent and represent a major threat to our ability to treat cancer patients. The emergence of antimicrobial resistance threatens the treatment of infections. In this study, the antimicrobial profiles, virulent genes, and the frequency of extended-spectrum beta-lactamase (ESBL) gene carriage in fecal isolates from cancer patients at the Laquintinie Hospital in Douala (Cameroon) were determined.

View Article and Find Full Text PDF

Introduction: The infections of multidrug-resistant organisms (MDROs) associated with duodenoscopes during endoscopic retrograde cholangiopancreatography (ERCP) procedure have become a significant cause for concern, especially in fragile patients. While the clinical impacts of these infections are well-documented, their economic implications remain underexplored. This study assesses the incidence and economic burden of post-ERCP infections in Italy using an administrative database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!