We have previously reported the identification of seven in vivo phosphorylation sites in the amino-terminal region of the human progesterone receptor (PR). From our previous in vivo studies, it was evident that several phosphopeptides remained unidentified. In particular, we wished to determine whether human PR contains a phosphorylation site in the hinge region, as do other steroid receptors including chicken PR, human androgen receptor, and mouse estrogen receptor. Previously, problematic trypsin cleavage sites hampered our ability to detect phosphorylation sites in large incomplete tryptic peptides. Using a combination of mass spectrometry and in vitro phosphorylation, we have identified six previously unidentified phosphorylation sites in human PR. Using nanoelectrospray ionization mass spectrometry, we have identified two new in vivo phosphorylation sites, Ser(20) and Ser(676), in baculovirus-expressed human PR. Ser(676) is analogous to the hinge site identified in other steroid receptors. Additionally, precursor ion scans identified another phosphopeptide that contains Ser(130)-Pro(131), a likely candidate for phosphorylation. In vitro phosphorylation of PR with Cdk2 has revealed five additional in vitro Cdk2 phosphorylation sites: Ser(25), Ser(213), Thr(430), Ser(554), and Ser(676). At least two of these, Ser(213) and Ser(676), are authentic in vivo sites. We confirmed the presence of the Cdk2-phosphorylated peptide containing Ser(213) in PR from in vivo labeled T47D cells, indicating that this is an in vivo site. Our combined studies indicate that most, if not all, of the Ser-Pro motifs in human PR are sites for phosphorylation. Taken together, these data indicate that the phosphorylation of PR is highly complex, with at least 14 phosphorylation sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M009805200 | DOI Listing |
Int J Physiol Pathophysiol Pharmacol
December 2024
Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University Motihari Motihari, Bihar 845401, India.
Objective: The Heat Shock Protein 70 (HSP70) family is a highly conserved group of molecular chaperones essential for maintaining cellular homeostasis. These proteins are necessary for protein folding, assembly, and degradation and involve cell recovery from stress conditions. HSP70 proteins are upregulated in response to heat shock, oxidative stress, and pathogenic infections.
View Article and Find Full Text PDFChembiochem
January 2025
University of Freiburg: Albert-Ludwigs-Universitat Freiburg, Institute of Pharmaceutical Sciences, Albertstr. 25, 79104, Freiburg, GERMANY.
Polyphosphate kinases (PPK) play crucial roles in various biological processes, including energy storage and stress responses, through their interaction with inorganic polyphosphate (polyP) and the intracellular nucleotide pool. Members of the PPK family 2 (PPK2s) catalyse polyP‑consuming phosphorylation of nucleotides. In this study, we characterised two PPK2 enzymes from Bacillus cereus (BcPPK2) and Lysinibacillus fusiformis (LfPPK2) to investigate their substrate specificity and potential for selective nucleotide synthesis.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, PR China. Electronic address:
Phosphorylation plays a crucial role in the cellular response to radiation and cancer therapies, yet phosphoproteomics studies in planarians remain underexplored despite the organism's remarkable regenerative capacities. This study utilized advanced ion mobility mass spectrometry for 4D-label-free quantitative proteomics to identify phosphorylation sites associated with irradiation in planarians. A total of 33,284 phosphorylation sites from 15,505 phosphorylated peptides and 4710 unique phosphoproteins were identified.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
Gram-negative bacterial pathogens inject effector proteins inside plant cells using a type III secretion system. These effectors manipulate plant cellular functions and suppress the plant immune system in order to promote bacterial proliferation. Despite the fact that bacterial effectors are exogenous threatening proteins potentially exposed to the protein degradation systems inside plant cells, effectors are relative stable and able to perform their virulence functions.
View Article and Find Full Text PDFPLoS One
January 2025
Wuzhou University, College of Food and Pharmaceutical Engineering, Guangxi, P. R. China.
Ginsenosides are the most important secondary metabolites of ginseng. Ginseng has developed certain insect resistance properties during the course of evolutionary environmental adaptation. However, the mechanism underlying the insect resistance of ginseng is poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!