Trafficking of inflammatory T cells into the brain is associated with interactions of certain chemokines with their receptors, which plays an important role in the pathogenesis of multiple sclerosis (MS). We examined whether interferon-beta (IFN-beta) had the ability to regulate the production of chemokines and the expression of their receptors in T cells derived from patients with MS. It was demonstrated for the first time that in vitro exposure of T cells to IFN-beta-1a selectively inhibited mRNA expression for RANTES and MIP-1alpha and their receptor CCR5. T cell surface expression of CCR5 was significantly reduced in MS patients treated with IFN-beta, correlating with decreased T cell transmigration toward RANTES and MIP-1alpha. The study provides new evidence suggesting that IFN-beta treatment impairs chemokine-induced T cell trafficking by reducing the production of RANTES and MIP-1alpha and the expression of their receptors CCR5.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0165-5728(00)00397-0DOI Listing

Publication Analysis

Top Keywords

rantes mip-1alpha
16
receptor ccr5
8
production rantes
8
expression receptors
8
regulation chemokine
4
chemokine receptor
4
ccr5
4
ccr5 production
4
rantes
4
mip-1alpha
4

Similar Publications

Background: The non-saponin (NS) fraction is an important active component of with multifunctional pharmacological activities including neuroprotective, immune regulatory, anti-inflammatory, and antioxidant effects. However, the effects of NSs on multiple sclerosis (MS), a chronic and autoimmune demyelinating disorder, have not yet been demonstrated.

Purpose: and Methods: The goal of the present study was to demonstrate the pharmacological actions of NSs on movement dysfunctions and the related mechanisms of action using an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.

View Article and Find Full Text PDF

Identification of Immune Infiltration-Associated CC Motif Chemokine Ligands as Biomarkers and Targets for Colorectal Cancer Prevention and Immunotherapy.

Int J Mol Sci

January 2025

Centre of Biomedical Systems and Informatics, ZJU-UoE Institute, School of Medicine, International Campus, Zhejiang University, Haining 314400, China.

Colorectal cancer (CRC) is the third most common cancer globally, with limited effective biomarkers and sensitive therapeutic targets. An increasing number of studies have highlighted the critical role of tumor microenvironment (TME) imbalances, particularly immune escape due to impaired chemokine-mediated trafficking, in tumorigenesis and progression. Notably, CC chemokines (CCLs) have been shown to either promote or inhibit angiogenesis, metastasis, and immune responses in tumors, thereby influencing cancer development and patient outcomes.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a chronic and lethal interstitial lung disease (ILD) of unknown origin, characterized by limited treatment efficacy and a fibroproliferative nature. It is marked by excessive extracellular matrix deposition in the pulmonary parenchyma, leading to progressive lung volume decline and impaired gas exchange. The chemokine system, a network of proteins involved in cellular communication with diverse biological functions, plays a crucial role in various respiratory diseases.

View Article and Find Full Text PDF

CCR1 antagonist as a potential modulator of inflammatory, autophagic, and apoptotic markers in spinal cord injury.

Neuropharmacology

February 2025

Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166, Messina, Italy.

Spinal cord injury (SCI) leads to severe and lasting impairments in motor and sensory functions. The intense inflammatory response following SCI is a significant challenge, and autophagy has emerged as a key factor in the recovery process. The C-C chemokine receptor type 1 (CCR1), a G-protein coupled receptor, plays a crucial role in managing the chemokine response under stress.

View Article and Find Full Text PDF

Microbial fermentation of non-digestible carbohydrates and/or protein produces short-chain fatty acids (SCFA), whereas branched-chain fatty acids (BCFA) are produced from protein fermentation. The effects of individual SCFA and BCFA of comparable carbon chain length on adipocyte inflammation have not been investigated. : To compare the effects of SCFA and BCFA on inflammatory mediator secretion in an adipocyte cell culture model designed to recapitulate obesity-associated adipocyte inflammation under normoxic and hypoxic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!