Ovulation: a multi-gene, multi-step process.

Steroids

Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.

Published: March 2001

The luteinizing hormone (LH) surge initiates a cascade of proteolytic events that control ovulation. One of the genes induced by LH is the progesterone receptor (PR). Because mice with a mutant PR gene (PRKO) fail to ovulate and are infertile, we have used them as a model in which to determine PR target genes that might mediate the ovulatory process. The matrix metalloproteinases (MMPs: MMP2, MMP9, and MMP13) appear to be expressed in ovaries of PRKO mice in a manner similar to that in their wild-type littermates. However, the expression of two other types of proteases, cathepsin L (a member of the papain family) and ADAMTS-1 (A Disintegrin And Metalloproteinase with Thrombospondin-like motifs), are selectively induced in granulosa cells of preovulatory follicles by the LH surge. Maximal levels of these proteases are observed at 12-16 h after an LH surge, the time of ovulation. Furthermore, mRNAs encoding cathepsin L and ADAMTS-1 are reduced in the PRKO mice compared to their wild-type littermates. These novel observations indicate that these two proteases regulate some key step(s) controlling ovulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0039-128x(00)00114-8DOI Listing

Publication Analysis

Top Keywords

prko mice
8
wild-type littermates
8
ovulation
4
ovulation multi-gene
4
multi-gene multi-step
4
multi-step process
4
process luteinizing
4
luteinizing hormone
4
hormone surge
4
surge initiates
4

Similar Publications

Women develop chronic pain during their reproductive years more often than men, and estrogen and progesterone regulate this susceptibility. We tested whether brain progesterone receptor (PR) signaling regulates pain susceptibility. During the estrous cycle, animals were more sensitive to pain during the estrus stage than in the diestrus stage, suggesting a role for reproductive hormones, estrogen, and progesterone.

View Article and Find Full Text PDF

Limbic progesterone receptors regulate spatial memory.

Sci Rep

February 2023

Department of Neurology, University of Virginia, Health Sciences Center, P.O. Box 801330, Charlottesville, VA, 22908, USA.

Progesterone and its receptors (PRs) participate in mating and reproduction, but their role in spatial declarative memory is not understood. Male mice expressed PRs, predominately in excitatory neurons, in brain regions that support spatial memory, such as the hippocampus and entorhinal cortex (EC). Furthermore, segesterone, a specific PR agonist, activates neurons in both the EC and hippocampus.

View Article and Find Full Text PDF

Progesterone receptor (PGR) activity is obligatory for mammalian ovulation; however, there is no established direct functional pathway explaining how progesterone receptor completely and specifically regulates oocyte release. This study examined the overarching cell- and isoform-specific effects of the PGR within each cellular compartment of the ovary, using mice null for the PGR (PRKO), as well as isoform-specific null mice. The PGR was expressed in ovarian granulosa and stromal cells and although PRKO ovaries showed no visible histological changes in preovulatory ovarian morphology, follicle rupture did not occur.

View Article and Find Full Text PDF

Progestogens' (e.g., progesterone and its neuroactive metabolite, allopregnanolone), cognitive effects and mechanisms among males are not well-understood.

View Article and Find Full Text PDF

Developmental expression of genes involved in progesterone synthesis, metabolism and action during the post-natal cerebellar myelination.

J Steroid Biochem Mol Biol

March 2021

Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Department of Human Biochemistry, University of Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina. Electronic address:

Progesterone is involved in dendritogenesis, synaptogenesis and maturation of cerebellar Purkinge cells, major sites of steroid synthesis in the brain. To study a possible time-relationship between myelination, neurosteroidogenesis and steroid receptors during development of the postnatal mouse cerebellum, we determined at postnatal days 5 (P5),18 (P18) and 35 (P35) the expression of myelin basic protein (MBP), components of the steroidogenic pathway, levels of endogenous steroids and progesterone's classical and non-classical receptors. In parallel with myelin increased expression during development, P18 and P35 mice showed higher levels of cerebellar progesterone and its reduced derivatives, higher expression of steroidogenic acute regulatory protein (StAR) mRNA, cholesterol side chain cleavage enzyme (P450scc) and 5α-reductase mRNA vs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!