The plasma kinetics and residual depletion in milk of cows treated by the intrauterine route with pessaries containing oxytetracycline (OTC) were evaluated. The antibiotic was administered to five healthy Friesian cows at a dosage of 3g/head in the early post partum phase. Blood samples were collected before and at different time intervals (3, 6, 12, 24, 48, 72, 84, and 96 h) after treatment. Milk was drawn before treatment and at 12-h intervals for 4 consecutive days. Samples were analysed by a high-performance liquid chromatography method and the pharmacokinetic parameters were processed using the minimum Akaike information criterion estimation (MAICE) test. The mean values obtained indicated a relatively low area under the concentration time curve (25.19+/-12.61 microg/mg per h) and maximum plasma concentration (Cmax) (0.549+/-0.278 microg/mL) with delayed time to Cmax (11.71+/-4.15 h) and elimination half-life (21.96+/-4.42 h). A similar pattern could be shown for milk, in which measurable residual levels are found in two out of five animals until the 72nd hour after treatment. Data obtained demonstrate that OTC administered as a solid form is poorly and slowly absorbed from the uterus of cows.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2885.2000.00260.x | DOI Listing |
Eur J Pharm Sci
January 2025
Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal. Electronic address:
Zonisamide exhibits significant pharmacokinetic variability, demanding for the development of population pharmacokinetic (PopPK) models to identify key factors influencing drug disposition. This study aimed to develop and validate a PopPK to optimize zonisamide posology in patients with refractory epilepsy. A total of 114 plasma concentrations of zonisamide, obtained from 64 patients, were used for PopPK model development, employing the nonlinear mixed-effects modelling approach.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
We report the assembly of poly(ethylene glycol) nanoparticles (PEG NPs) and optimize their surface chemistry to minimize the formation of protein coronas and immunogenicity for improved biodistribution. PEG NPs cross-linked with disulfide bonds are synthesized utilizing zeolitic imidazolate framework-8 NPs as the templates, which are subsequently modified with PEG molecules with different end groups (carboxyl, methoxy, or amino) to vary the surface chemistry. Among the modifications, the amino and residual carboxyl groups form a pair of zwitterionic structures on the surface of PEG NPs, which minimize the adsorption of proteins (e.
View Article and Find Full Text PDFClin Endosc
January 2025
Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University College of Medicine, Seoul, Korea.
Int J Pharm
February 2025
Holistic Integrative Medicine Industry Collaborative Innovation Research Center, Qiang Medicine Standard Research Promotion Base and Collaborative Innovation Research Center, School of Preclinical Medicine, Chengdu University, Sichuan-Chengdu 610106, China. Electronic address:
Gastric ulcers often cause postprandial epigastric pain, especially in acute cases. Abnormal motility, with about 50 % of patients having delayed gastric emptying, contributes to ulcer development. Costunolide (COS) and dehydrocostuslactone (DEH), derived from "Mu xiang" herbs, show potential in treating ulcers and regulating gastrointestinal motility.
View Article and Find Full Text PDFSci Rep
January 2025
Discovery3 Team, Department of Research and Early Development, GC Biopharma, 93, Ihyeon-ro 30Beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea.
Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a rare and life-threatening blood disorder characterized by the formation of blood clots in small blood vessels. It is caused by antibodies targeting the A disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13 (ADAMTS13), which plays a role in cleaving von Willebrand factor. Most patients with iTTP have autoantibodies against specific domains of the ADAMTS13 protein, particularly the cysteine-rich and spacer domains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!