We have used UV flash photolysis of DM-nitrophen in combination with model-based analysis of Oregon Green 488 BAPTA-5N fluorescence transients to study the kinetics of Ca(2+) binding to calbindin-D(28K). The experiments used saturated DM-nitrophen at a [Ca(2+)] of 1.5 microM. Under these conditions, UV laser flashes produced rapid steplike increases in [Ca(2+)] in the absence of calbindin-D(28K), and in its presence the decay of the flash-induced fluorescence was due solely to the Ca(2+) buffering by the protein. We developed a novel method for kinetic parameter derivation and used the synthetic Ca(2+) buffer EGTA to confirm its validity. We provide evidence that calbindin-D(28K) binds Ca(2+) in at least two distinct kinetic patterns, one arising from high-affinity sites that bind Ca(2+) with a k(on) comparable to that of EGTA (i.e., approximately 1 x 10(7) M(-1) s(-1)) and another with lower affinity and an approximately eightfold faster k(on). In view of the inability of conventional approaches to adequately resolve rapid Ca(2+) binding kinetics of Ca(2+) buffers, this method promises to be highly valuable for studying the Ca(2+) binding properties of other biologically important Ca(2+) binding proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1301179 | PMC |
http://dx.doi.org/10.1016/S0006-3495(00)76537-4 | DOI Listing |
Am J Physiol Cell Physiol
December 2024
Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
Plasma membrane repair (PMR) restores membrane integrity of cells, preventing cell death in vital organs, and has been studied extensively in skeletal muscle. Dysferlin, a sarcolemmal Ca-binding protein, plays a crucial role in PMR in skeletal muscle. Previous studies have suggested that PMR employs membrane trafficking and membrane fusion, similar to neurotransmission.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
December 2024
Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, California, USA.
The optimum length for force generation () increases as activation is reduced, challenging classic theories of muscle contraction. Although the activation dependence of is seemingly consistent with length-dependent Ca sensitivity, this mechanism can't explain the apparent force dependence of , or the effect of series compliance on activation-related shifts in . We have tested a theory proposing that the activation dependence of relates to force depression resulting from shortening against series elasticity.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada. Electronic address:
Calpain-3 is an intracellular Ca-dependent cysteine protease abundant in skeletal muscle. Loss-of-function mutations in its single-copy gene cause a dystrophy of the limb-girdle muscles. These mutations, of which there are over 500 in humans, are spread all along this 94-kDa multi-domain protein that includes three 40+-residue sequences (NS, IS1, and IS2).
View Article and Find Full Text PDFElife
December 2024
Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.
To encode continuous sound stimuli, the inner hair cell (IHC) ribbon synapses utilize calcium-binding proteins (CaBPs), which reduce the inactivation of their Ca1.3 calcium channels. Mutations in the gene underlie non-syndromic autosomal recessive hearing loss DFNB93.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China. Electronic address:
Aptamer conformations are susceptible to environmental conditions, which makes it difficult to achieve stable targets detection in complex environments with aptasensors. Imprinting strategy was proposed to immobilize the specific conformation of aptamers, aiming to enhance their recognition anti-interference. However, it is mechanistically unclear how the imprinted polymers affect aptamers' recognition, which limits application of the strategy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!